On the stability of wavelet and Gabor frames (Riesz bases)

被引:0
作者
Zhang Jing
机构
[1] Academia sinica,Institute of Mathematics
来源
Journal of Fourier Analysis and Applications | 1999年 / 5卷
关键词
26B05; 42B10; 42C99; frame; Gabor system; Riesz basis; stability; wavelet;
D O I
暂无
中图分类号
学科分类号
摘要
If the sequence of functions ϕj, k is a wavelet frame (Riesz basis) or Gabor frame (Riesz basis), we obtain its perturbation system ψj,k which is still a frame (Riesz basis) under very mild conditions. For example, we do not need to know that the support of ϕ or ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\hat \phi or\hat \psi )$$ \end{document} is compact as in [14]. We also discuss the stability of irregular sampling problems. In order to arrive at some of our results, we set up a general multivariate version of Littlewood-Paley type inequality which was originally considered by Lemarié and Meyer [17], then by Chui and Shi [9], and Long [16].
引用
收藏
页码:105 / 125
页数:20
相关论文
共 20 条
[1]  
Benedetto J.J.(1995)Differentiation and the Balian-Low Theorem J. Fourier Anal. 1 355-402
[2]  
Heil C.(1995)Frame perturbation Proc. Amer. Math. Soc. 123 1217-1220
[3]  
Walnut D.F.(1994)Bessel sequences and affine frames Appl. Comput. Harm. Anal. 1 29-49
[4]  
Christensen O.(1993)Inequalities of Littlewood-Paley type for frames and wavelets SIAM J. Math. Anal. 24 263-277
[5]  
Chui C.K.(1990)The wavelet transform, time-frequency localization and signal analysis IEEE Trans. Inform. Theory 36 961-1005
[6]  
Shi X.(1986)Painless nonorthogonal expansions J. Math. Phys. 27 1271-1276
[7]  
Chui C.K(1952)A class of nonharmonic Fourier series Trans. Amer. Math. Soc. 72 341-366
[8]  
Shi X.(1995)On the stability of frames and Riesz basis Appl. Comput. Harm. Anal. 2 160-173
[9]  
Daubechies I.(1989)Continuous and discrete wavelet transforms SIAM Rev. 31 628-666
[10]  
Daubechies I.(1986)Ondelettes et bases Hilbertinnes Rev. Mat. Iberoamericanna 21 1-18