Euclidean and Hermitian LCD MDS codes

被引:0
作者
Claude Carlet
Sihem Mesnager
Chunming Tang
Yanfeng Qi
机构
[1] Universities of Paris VIII and XIII,Department of Mathematics
[2] LAGA,Department of Mathematics
[3] UMR 7539,School of Mathematics and Information
[4] CNRS,School of Science
[5] Universities of Paris VIII and XIII and Telecom ParisTech,undefined
[6] LAGA,undefined
[7] UMR 7539,undefined
[8] CNRS,undefined
[9] China West Normal University,undefined
[10] Hangzhou Dianzi University,undefined
来源
Designs, Codes and Cryptography | 2018年 / 86卷
关键词
Linear codes; MDS codes; Linear complementary dual; Self-dual codes; Self-orthogonal codes; 94B05; 94B65;
D O I
暂无
中图分类号
学科分类号
摘要
Linear codes with complementary duals (abbreviated LCD) are linear codes whose intersection with their dual is trivial. When they are binary, they play an important role in armoring implementations against side-channel attacks and fault injection attacks. Non-binary LCD codes in characteristic 2 can be transformed into binary LCD codes by expansion. On the other hand, being optimal codes, maximum distance separable codes (abbreviated MDS) are of much interest from many viewpoints due to their theoretical and practical properties. However, little work has been done on LCD MDS codes. In particular, determining the existence of q-ary [n, k] LCD MDS codes for various lengths n and dimensions k is a basic and interesting problem. In this paper, we firstly study the problem of the existence of q-ary [n, k] LCD MDS codes and solve it for the Euclidean case. More specifically, we show that for q>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>3$$\end{document} there exists a q-ary [n, k] Euclidean LCD MDS code, where 0≤k≤n≤q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le k \le n\le q+1$$\end{document}, or, q=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2^{m}$$\end{document}, n=q+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=q+2$$\end{document} and k=3orq-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k= 3 \text { or } q-1$$\end{document}. Secondly, we investigate several constructions of new Euclidean and Hermitian LCD MDS codes. Our main techniques in constructing Euclidean and Hermitian LCD MDS codes use some linear codes with small dimension or codimension, self-orthogonal codes and generalized Reed-Solomon codes.
引用
收藏
页码:2605 / 2618
页数:13
相关论文
共 39 条
[1]  
Alderson TL(2007)Maximum distance separable codes and arcs in projective spaces J. Combin. Theory Ser. A 114 1101-1117
[2]  
Bruen AA(2012)On sets of vectors of a finite vector space in which every subset of basis size is a basis J. Eur. Math. Soc 14 733-748
[3]  
Silverman R(2012)On sets of vectors of a finite vector space in which every subset of basis size is a basis II Des. Codes Cryptogr 65 5-14
[4]  
Ball S(1990)Arcs in Geom. Dedic. 35 1-11
[5]  
Ball S(2017), MDS-codes and three fundamental problems of B. Segre—some extensions Finite Fields and Their Applications 45 1-18
[6]  
De Beule J(2017)Constacyclic codes over finite commutative semi-simple rings Finite Fields Their Appl. 47 183-202
[7]  
Blokhuis A(2016)Structure and performance of generalized quasi-cyclic codes Finite Fields Their Appl. 42 67-80
[8]  
Bruen AA(2008)Quasi-cyclic complementary dual codes Proc. ISIT 2008 1954-1957
[9]  
Thas JA(2017)On self-dual MDS codes IEEE Trans. Inf. Theory 63 2843-2847
[10]  
Dinh Hai Q.(2017)Construction of MDS codes with complementary duals Designs, Codes and Cryptography 86 2261-2278