Prediction of magnetocaloric effect using a phenomenological model in (x) La0.6Ca0.4MnO3/(1 − x) La0.6Sr0.4MnO3 composites

被引:0
作者
H. Gharsallah
M. Jeddi
M. Bejar
E. Dhahri
E. K. Hlil
机构
[1] Université de Sfax,Laboratoire de Physique Appliquée, Faculté des Sciences
[2] Université de Sfax,Institut Préparatoire aux Études d’Ingénieur de Sfax
[3] CNRS Université J. Fourier,Institut Néel
来源
Applied Physics A | 2019年 / 125卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This research paper presents a theoretical work on the magnetocaloric properties of (SC.4-2) composite obtained by mixing citric-gel La0.6Ca0.4MnO3 (S0C1) and La0.6Sr0.4MnO3 (S1C0), with mole fractions [0.875 (S0C1)/0.125 (S1C0)]. This mixture was then fritted at 900 °C. The magnetization of the composite goes in good agreement with the following relationship M(SC.4-2)=0.865×M(S0C1)+0.135×M(S1C0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(\mathrm{S}\mathrm{C}.4{\text{-}}2)=0.865\times M(\mathrm{S}0\mathrm{C}1)+0.135 \times M(\mathrm{S}1\mathrm{C}0)$$\end{document}, where (0.865, 0.135) are the corresponding weight fractions to mole fractions (0.875, 0.125) of parent compounds [(S0C1) (S1C0)]. Resting upon this equality, the magnetic entropy change and the specific heat of composite were predicted at a constant field and pressure. The variation of the magnetic entropy ΔSM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left|{\Delta S}_{M}\right|$$\end{document} and the heat capacity ΔCP,H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta C}_{P,H}$$\end{document} as a function of temperature of the two parent compounds (S0C1) and (S1C0), with a phenomenological model, were obtained in our previous research work. The values of the maximum magnetic entropy change ΔSMmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left|\left({\Delta S}_{M}\right)\right|}_{\mathrm{m}\mathrm{a}\mathrm{x}}$$\end{document}, full width at half-maximum δTFWHM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\updelta} T_{\mathrm{F}\mathrm{W}\mathrm{H}\mathrm{M}}$$\end{document} and relative cooling power (RCP), at several magnetic field variations, were determined. In addition to the S0C1 mother compound, the SC.4-2 composite displays the highest value of RCP, providing an estimate of the quantity of the heat transfer between the hot (Thot) and cold (Tcold) ends during one refrigeration cycle. At a later stage, the study of the dependence on temperature of the magnetic entropy of (x) S0C1/(1 − x) S1C0 composites reveals that the optimum composition stands for x = 0.4. Indeed, it gives comparable contributions of two parent compounds, leading to a practically uniform variation of entropy over a wide temperature range.
引用
收藏
相关论文
共 209 条
[1]  
Tozri A(2010)undefined Mater. Lett. 64 2138-undefined
[2]  
Dhahri E(2000)undefined Annu. Rev. Mater. Sci. 30 387-undefined
[3]  
Hlil EK(2008)undefined J. Magn. Magn. Mater. 320 2613-undefined
[4]  
Gschneidner KA(2005)undefined J. Phys. D Appl. Phys. 38 R381-undefined
[5]  
Pecharsky VK(2007)undefined J. Alloys Compd. 442 136-undefined
[6]  
Dhahri J(2014)undefined Ceram. Int. 40 16449-undefined
[7]  
Dhahri A(2006)undefined J. Alloys Compd. 414 31-undefined
[8]  
Oumezzine M(2016)undefined Ceram. Int. 42 1476-undefined
[9]  
Dhahri E(2009)undefined Phys. Rev. B 79 144407-undefined
[10]  
Brück E(2010)undefined J. Magn. Magn. Mater. 322 1569-undefined