Stability of solutions for nonlinear Schrödinger equations in critical spaces

被引:0
作者
Dong Li
XiaoYi Zhang
机构
[1] University of Iowa,Department of Mathematics
[2] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
来源
Science China Mathematics | 2011年 / 54卷
关键词
Schrödinger equation; stability; critical space; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for nonlinear Schrödinger equation iut + Δu = ± |u|pu, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{4} {d} < p < \frac{4} {{d - 2}}$\end{document} in high dimensions d ⩾ 6. We prove the stability of solutions in the critical space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot H_x^{s_p }$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s_p = \frac{d} {2} - \frac{2} {p}$\end{document}.
引用
收藏
页码:973 / 986
页数:13
相关论文
共 14 条
  • [1] Colliander J.(2007)Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R3 Ann of Math 166 1-100
  • [2] Keel M.(2006)Global well-posedness, scattering, and blowup for the energy-critical, focusing, non-linear Schrödinger equation in the radial case Invent Math 166 645-675
  • [3] Staffilani G.(1992)Smoothing properties and retarded estimates for some dispersive evolution equations Comm Math Phys 144 163-188
  • [4] Kenig C. E.(1998)Endpoint Strichartz estimates Amer Math J 120 955-980
  • [5] Merle F.(1967)Multipliers on fractional Sobolev spaces J Math Mech 16 1031-1060
  • [6] Ginibre J.(1977)Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations Duke Math J 44 705-774
  • [7] Velo G.(2005)Stability of energy-critical nonlinear Schrödinger equations in high dimensions Electron J Diff Eqns 118 1-28
  • [8] Keel M.(2007)The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions Duke Math J 138 281-374
  • [9] Tao T.(undefined)undefined undefined undefined undefined-undefined
  • [10] Strichartz R. S.(undefined)undefined undefined undefined undefined-undefined