The weighted L 1-Integrability of functions and the parseval equality with respect to multiplicative systems

被引:1
作者
S. S. Volosivets
机构
[1] Saratov State University, Saratov, 410012
关键词
Generalized monotonicity; Multiplicative systems of bounded type; Weighted L1-integrability;
D O I
10.3103/S1066369X12080026
中图分类号
学科分类号
摘要
In this paper we prove necessary and sufficient conditions for the weighted L1-integrability of functions defined on [0, 1) in terms of Fourier coefficients with respect to a multiplicative system of bounded type. These results are counterparts of trigonometric ones obtained by M. and S. Izumi and M. M. Robertson. © S.S. Volosivets, 2012.
引用
收藏
页码:11 / 21
页数:10
相关论文
共 12 条
[1]  
Golubov V.I., Efimov A.V., Skvortsov V.A., Walsh Series and Transforms, (1987)
[2]  
Onneweer C.W., Waterman D., Uniform convergence of fourier series on groups, Michigan J. Math., 18, 3, pp. 265-273, (1971)
[3]  
Leindler L., A new class of numerical sequences and its application to sine and cosine series, Anal. Math., 28, 4, pp. 279-286, (2002)
[4]  
Tikhonov S., Trigonometric series with general monotone coefficients, J. Math. Anal. Appl., 326, 1, pp. 721-735, (2007)
[5]  
Heywood P., Integrability theorems for trigonometric series, Quart. J.Math., 13, 2, pp. 172-180, (1962)
[6]  
Boas R.P., Integrability Theorems for Trigonometric Transforms, (1967)
[7]  
Robertson M.M., Integrability theorems for trigonometric series and transforms, Math. Zeitschrift, 91, 1, pp. 20-29, (1966)
[8]  
Izumi M., Izumi S., Integrability theorems for fourier series and parseval equation, J. Math. Anal. Appl., 18, 2, pp. 252-261, (1967)
[9]  
Volosivets S.S., Certain conditions in the theory of series with respect to multiplicative systems, Anal. Math., 33, 3, pp. 227-246, (2007)
[10]  
Agaev G.N., Vilenkin N.Y., Dzhafarli G.M., Rubinshtein A.I., Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional, (1981)