Radial Graphs of Constant Mean Curvature and Doubly Connected Minimal Surfaces with Prescribed Boundary

被引:0
|
作者
Pedro Fusieger
Jaime Ripoll
机构
[1] Universidade Federal de Santa Maria,Departamento de Matemática
[2] Universidade Federal do Rio Grande do Sul,Instituto de Matemática
来源
Annals of Global Analysis and Geometry | 2003年 / 23卷
关键词
radial graphs; constant mean curvature; Dirichlet Problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate existence and uniqueness of radial graphs ofconstant mean curvature (cmc) with prescribed boundary. Our main resultestablishes the existence of a minimal radial anullus spanning two givenconvex curves in parallel planes of R3; we also obtain a variant ofa well-known result of James Serrin about the existence of radial cmc graphsover convex domains in the sphere.
引用
收藏
页码:373 / 400
页数:27
相关论文
共 50 条
  • [21] On curvature estimates for constant mean curvature surfaces
    Tinaglia, Giuseppe
    GEOMETRIC ANALYSIS: PARTIAL DIFFERENTIAL EQUATIONS AND SURFACES, 2012, 570 : 165 - 185
  • [22] Constant mean curvature surfaces with circular boundary in R3
    Hinojosa, PA
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2006, 78 (01): : 1 - 6
  • [23] Some existence and nonexistence theorems for compact graphs of constant mean curvature with boundary in parallel planes
    Nedir do Espirito-Santo
    Jaime Ripoll
    The Journal of Geometric Analysis, 2001, 11 (4): : 603 - 618
  • [24] BIHARMONIC SURFACES OF CONSTANT MEAN CURVATURE
    Loubeau, Eric
    Oniciuc, Cezar
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 271 (01) : 213 - 230
  • [25] Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary
    Chopp, D
    Velling, JA
    EXPERIMENTAL MATHEMATICS, 2003, 12 (03) : 339 - 350
  • [26] Geodesic graphs with constant mean curvature in spheres
    Fornari, S
    de Lira, JHS
    Ripoll, J
    GEOMETRIAE DEDICATA, 2002, 90 (01) : 201 - 216
  • [27] Uniqueness results for constant mean curvature graphs
    Mazet, Laurent
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 230 (02) : 365 - 380
  • [28] Geodesic Graphs with Constant Mean Curvature in Spheres
    Susana Fornari
    Jorge H. S. de Lira
    Jaime Ripoll
    Geometriae Dedicata, 2002, 90 : 201 - 216
  • [29] Timelike Constant Mean Curvature Surfaces with Singularities
    Brander, David
    Svensson, Martin
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (03) : 1641 - 1672
  • [30] Robust Modeling of Constant Mean Curvature Surfaces
    Pan, Hao
    Choi, Yi-King
    Liu, Yang
    Hu, Wenchao
    Du, Qiang
    Polthier, Konrad
    Zhang, Caiming
    Wang, Wenping
    ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (04):