Radial Graphs of Constant Mean Curvature and Doubly Connected Minimal Surfaces with Prescribed Boundary

被引:0
作者
Pedro Fusieger
Jaime Ripoll
机构
[1] Universidade Federal de Santa Maria,Departamento de Matemática
[2] Universidade Federal do Rio Grande do Sul,Instituto de Matemática
来源
Annals of Global Analysis and Geometry | 2003年 / 23卷
关键词
radial graphs; constant mean curvature; Dirichlet Problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate existence and uniqueness of radial graphs ofconstant mean curvature (cmc) with prescribed boundary. Our main resultestablishes the existence of a minimal radial anullus spanning two givenconvex curves in parallel planes of R3; we also obtain a variant ofa well-known result of James Serrin about the existence of radial cmc graphsover convex domains in the sphere.
引用
收藏
页码:373 / 400
页数:27
相关论文
共 13 条
[1]  
Douglas J.(1932)The problem of plateau for two contours Proc. Amer. Math. Soc. 18 315-359
[2]  
Espirito-Santo N.(2001)Some existence and nonexistence theorems for compact graphs of constant mean curvature with boundary in parallel planes J. Geom. Anal. 11 601-617
[3]  
Ripoll J.(1966)On the bounded slope condition Pacific J. Math. 18 495-511
[4]  
Hartman P.(1991)Minimal surfaces bounded by convex curves in parallel planes Comment. Math. Helv. 66 263-278
[5]  
Meeks W. H.(1932)Contributions to the theory of minimal surfaces Acta Sci. Math. Univ. Szeged 6 1-20
[6]  
White B.(2002)Some existence results and gradient estimates of solutions of the Dirichlet problem for the constant mean curvature equation in convex domains J. Differential Equations 181 230-241
[7]  
Rado T.(1969)The problem of Dirichlet for quasilinear elliptic equations with many independent variables Philos. Trans. Roy. Soc. London, Ser. A 264 413-496
[8]  
Ripoll J.(1970)The Dirichlet problem for surfaces of constant mean curvature Philos. Trans. Roy. Soc. London 21 361-384
[9]  
Serrin J.(1956)On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes Ann. of Math. 63 77-90
[10]  
Serrin J.(1980)The n-dimensional least area problem of boundaries on convex cone Arch. Rational Mech. Anal. 75 407-416