Complete convergence for weighted sums of widely orthant-dependent random variables

被引:0
作者
Pingyan Chen
Soo Hak Sung
机构
[1] Jinan University,Department of Mathematics
[2] Pai Chai University,Department of Applied Mathematics
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Complete convergence; Strong law of large numbers; Weighted sum; Widely orthant-dependent random variable; 60F15;
D O I
暂无
中图分类号
学科分类号
摘要
The complete convergence results for weighted sums of widely orthant-dependent random variables are obtained. A strong law of large numbers for weighted sums of widely orthant-dependent random variables is also obtained. Our results extend and generalize some results of Chen and Sung (J. Inequal. Appl. 2018:121, 2018), Zhang et al. (J. Math. Inequal. 12:1063–1074, 2018), Chen and Sung (Stat. Probab. Lett. 154:108544, 2019), Lang et al. (Rev. Mat. Complut., 2020, https://doi.org/10.1007/s13163-020-00369-5), and Liang (Stat. Probab. Lett. 48:317–325, 2000).
引用
收藏
相关论文
共 47 条
[1]  
Bai Z.(1985)The complete convergence for partial sums of iid random variables Sci. Sin., Ser. A 28 1261-1277
[2]  
Su C.(2000)Marcinkiewicz strong laws for linear statistics Stat. Probab. Lett. 46 105-112
[3]  
Bai Z.D.(1965)Convergence rates in the law of large numbers Trans. Am. Math. Soc. 120 108-123
[4]  
Cheng P.E.(2005)Limiting behavior of weighted sums of negatively associated random variables Math. Acta Sin. A 25 489-495
[5]  
Baum L.E.(2007)Limiting behavior of weighted sums of i.i.d. random variables Stat. Probab. Lett. 77 1589-1599
[6]  
Katz M.(2018)On complete convergence and complete moment convergence for weighted sums of J. Inequal. Appl. 2018 1482-1493
[7]  
Chen P.(2019)-mixing random variables Stat. Probab. Lett. 154 625-641
[8]  
Chen P.(1966)A Spitzer-type law of large numbers for widely orthant dependent random variables Ann. Math. Stat. 37 25-31
[9]  
Gan S.(1995)Some convergence theorems for independent random variables J. Theor. Probab. 8 317-325
[10]  
Chen P.(1947)A strong law for weighted sums of i.i.d. random variables Proc. Natl. Acad. Sci. USA 33 109-124