The modularity of elliptic curves over all but finitely many totally real fields of degree 5

被引:0
作者
Yasuhiro Ishitsuka
Tetsushi Ito
Sho Yoshikawa
机构
[1] Kyushu University,Institute of Mathematics for Industry
[2] Kyoto University,Department of Mathematics, Faculty of Science
[3] Gakushuin University,Department of Mathematics
来源
Research in Number Theory | 2022年 / 8卷
关键词
Modularity; Elliptic curves; Totally real fields; Modular curves; Modular forms; Jacobians;
D O I
暂无
中图分类号
学科分类号
摘要
We study the finiteness of low degree points on certain modular curves and their Atkin–Lehner quotients, and, as an application, prove the modularity of elliptic curves over all but finitely many totally real fields of degree 5. On the way, we prove a criterion for the finiteness of rational points of degree 5 on a curve of large genus over a number field using the results of Abramovich–Harris and Faltings on subvarieties of Jacobians.
引用
收藏
相关论文
共 50 条
  • [21] On the cyclic torsion of elliptic curves over cubic number fields
    Wang, Jian
    JOURNAL OF NUMBER THEORY, 2018, 183 : 291 - 308
  • [22] EXCEPTIONAL ELLIPTIC CURVES OVER QUARTIC FIELDS
    Najman, Filip
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (05) : 1231 - 1246
  • [23] QUOTIENTS OF ELLIPTIC CURVES OVER FINITE FIELDS
    Achter, Jeffrey D.
    Wong, Siman
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (06) : 1395 - 1412
  • [24] GENERATORS OF ELLIPTIC CURVES OVER FINITE FIELDS
    Shparlinski, Igor E.
    Voloch, Jose Felipe
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (04): : 657 - 670
  • [25] Orchards in elliptic curves over finite fields
    Padmanabhan, R.
    Shukla, Alok
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68
  • [26] On the cyclic torsion of elliptic curves over cubic number fields (II)
    Wang, Jian
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2019, 31 (03): : 663 - 670
  • [27] The Modularity of Special Cycles on Orthogonal Shimura Varieties over Totally Real Fields under the Beilinson-Bloch Conjecture
    Maeda, Yota
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (01): : 39 - 53
  • [28] Torsion of rational elliptic curves over quartic Galois number fields
    Chou, Michael
    JOURNAL OF NUMBER THEORY, 2016, 160 : 603 - 628
  • [29] TORSION OF RATIONAL ELLIPTIC CURVES OVER CUBIC FIELDS
    Gonzalez-Jimenez, Enrique
    Najman, Filip
    Tornero, Jose M.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (06) : 1899 - 1917
  • [30] Torsion of rational elliptic curves over quadratic fields
    Enrique González-Jiménez
    José M. Tornero
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 : 923 - 934