On the Uniqueness of the Density for the Invariant Measure in an Infinite Hyperbolic Iterated Function System

被引:0
作者
R. Daniel Mauldin
Mariusz Urbański
机构
[1] University of North Texas,Department of Mathematics
关键词
Iterated function systems; conformal and invariant measures; density; almost periodic;
D O I
10.1023/A:1004774202289
中图分类号
学科分类号
摘要
We consider a regular infinite hyperbolic iterated function satisfying a property which guarantees that the associated Frobenius-Perron operator ℒ is almost periodic. For such a system there is a unique invariant probablility measure μ supported on J, the limit set of the system and which is equivalent to the conformal measure m of the system. In this note we will demonstrate two properties of dμ/dm. Firstly, we show that there is a unique positive continuous function on X, ρ such that ℒρ = ρ and ∫ ρdm = 1. This function is the density of μ with respect to m. Secondly, we show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\{ \mathcal{L}(\coprod _X )\} _{^{n = 1} }^\infty$$ \end{document} converges uniformly to ρ on X.
引用
收藏
页码:47 / 53
页数:6
相关论文
共 5 条
  • [1] Denker M.(1991)Ergodic theory of equilibrium states for rational maps Nonlinearity 4 103-134
  • [2] UrbaŃski M.(1983)Entropy properties of rational endomorphisms of the Riemann sphere Ergod. Th. Dynam. Sys. 5 27-43
  • [3] Ljubich V.(1996)Dimensions and measures in infinite iterated function systems Proc. London Math. Soc. 73 105-154
  • [4] Mauldin R. D.(undefined)undefined undefined undefined undefined-undefined
  • [5] UrbaŃski M.(undefined)undefined undefined undefined undefined-undefined