Diophantine Triples and k-Generalized Fibonacci Sequences

被引:0
作者
Clemens Fuchs
Christoph Hutle
Florian Luca
László Szalay
机构
[1] University of Salzburg,
[2] University of Witwatersrand,undefined
[3] Centro de Ciencias Matemáticas UNAM,undefined
[4] J. Selye University,undefined
[5] University of West Hungary,undefined
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2018年 / 41卷
关键词
Diophantine triples; Generalized Fibonacci numbers; Diophantine equations; Application of the Subspace theorem; 11D72; 11B39; 11J87;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} is an integer and (Fn(k))n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big (F_n^{(k)}\big )_{n\ge 0}$$\end{document} is the sequence of k-generalized Fibonacci numbers, then there are only finitely many triples of positive integers 1<a<b<c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<a<b<c$$\end{document} such that ab+1,ac+1,bc+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab+1,~ac+1,~bc+1$$\end{document} are all members of {Fn(k):n≥1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big \{F_n^{(k)}: n\ge 1\big \}$$\end{document}. This generalizes a previous result where the statement for k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} was proved. The result is ineffective since it is based on Schmidt’s subspace theorem.
引用
收藏
页码:1449 / 1465
页数:16
相关论文
共 27 条
  • [1] Bravo JJ(2013)On a conjecture about repdigits in k-generalized Fibonacci sequences Publ. Math. Debrecen 82 623-639
  • [2] Luca F(2001)On the Galois group of the generalized Fibonacci polynomial Ann. Şt. Univ. Ovidius Constanţa 9 27-38
  • [3] Cipu M(2004)There are only finitely many Diophantine quintuples J. Reine Angew. Math. 566 183-214
  • [4] Luca F(1996)An improvement of the quantitative Subspace Theorem Compos. Math. 101 225-311
  • [5] Dujella A(2002)Linear equations in variables which lie in a multipilicative group Ann. Math. 2 807-836
  • [6] Evertse J-H(2008)Diophantine triples with values in binary recurrences Ann. Sc. Norm. Super. Pisa Cl. Sc. 5 579-608
  • [7] Evertse J-H(2003)Perfect powers in linear recurrence sequences Acta Arith. 107 9-25
  • [8] Schmidt W(2003)Polynomial-exponential equations and linear recurrences Glas. Mat. Ser. III 38 233-252
  • [9] Schlickewei H-P(2015)Tribonacci Diophantine quadruples Glas. Mat. 50 17-24
  • [10] Fuchs C(2014)Diophantine triples and reduced quadruples with the Lucas sequence of recurrence Glas. Mat. 49 303-312