On Topological Spaces Defined by I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}$$\end{document}-Convergence

被引:0
作者
Xiangeng Zhou
Li Liu
Shou Lin
机构
[1] Ningde Normal University,Department of Mathematics
关键词
Ideal convergence; Statistical convergence; -sequential space; -Fréchet-Urysohn space; -continuous mapping; Quotient mapping; 54A20; 54B15; 54C08; 54D55; 40A05; 26A03;
D O I
10.1007/s41980-019-00284-6
中图分类号
学科分类号
摘要
Ideal convergence in a topological space is induced by changing the definition of the convergence of sequences on the space by an ideal. Let I⊆2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}\subseteq 2^{\mathbb {N}}$$\end{document} be an ideal. A sequence (xn:n∈N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_{n}:n\in {\mathbb {N}})$$\end{document} in a topological space X is said to be I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal I$$\end{document}-convergent to a point x∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in X$$\end{document} provided for any neighborhood U of x in X, we have the set {n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{n$$\end{document}∈N:xn∉U}∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in {\mathbb {N}}:x_{n}\notin U \}\in {\mathcal {I}}$$\end{document}. Recently, I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}$$\end{document}-sequential spaces and I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}$$\end{document}-Fréchet-Urysohn spaces are introduced and studied. In this paper, we discuss some topological spaces defined by I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}$$\end{document}-convergence and their mappings on these spaces, expound their operation properties on these spaces, and study the role of maximal ideals of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {N}}$$\end{document} in I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal I$$\end{document}-convergence. We can apply I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}$$\end{document}-convergence to unify and simplify the proofs of some old results in the literature and obtain some new results on the usual convergence and statistical convergence of topological spaces.
引用
收藏
页码:675 / 692
页数:17
相关论文
共 62 条
[1]  
Boone JR(1976)Sequentially quotient mappings Czechoslov. Math. J. 26 174-182
[2]  
Siwiec F(2012)Sequential definitions of connectedness Appl. Math. Lett 25 461-465
[3]  
Çakallı H(2008)Measure theory of statistical convergence Sci. China Ser. A 51 2285-2303
[4]  
Cheng LX(2009)On real-valued measures of statistical type and their applications to statistical convergence Math. Comput. Model. 50 116-122
[5]  
Lin GC(2000)A Characterization of Banach spaces with separable duals via weak statistical convergence J. Math. Anal. Appl. 244 251-261
[6]  
Lan YY(1993)Measures and ideals of Ann. N. Y. Acad. Sci. 704 80-91
[7]  
Liu H(2012)Some further results on ideal convergence in topological spaces Topol. Appl. 159 2621-2626
[8]  
Cheng LX(2011)When Topol. Appl. 158 1529-1533
[9]  
Lin GC(2016)-Cauchy nets in complete uniform spaces are Topol. Appl 202 183-193
[10]  
Shi HH(2008)-convergent Math. Slovaca 58 605-620