A Bayesian Approach to Spatial Prediction With Flexible Variogram Models

被引:0
|
作者
Stefano Castruccio
Luca Bonaventura
Laura M. Sangalli
机构
[1] The University of Chicago,Department of Statistics
[2] Politecnico di Milano,MOX—Dipartimento di Matematica
来源
Journal of Agricultural, Biological, and Environmental Statistics | 2012年 / 17卷
关键词
Markov chain Monte Carlo; Kriging; Variogram estimation;
D O I
暂无
中图分类号
学科分类号
摘要
A Bayesian approach to covariance estimation and spatial prediction based on flexible variogram models is introduced. In particular, we consider black-box kriging models. These variogram models do not require restrictive assumptions on the functional shape of the variogram; furthermore, they can handle quite naturally non isotropic random fields. The proposed Bayesian approach does not require the computation of an empirical variogram estimator, thus avoiding the arbitrariness implied in the construction of the empirical variogram itself. Moreover, it provides a complete assessment of the uncertainty in the variogram estimation. The advantages of this approach are illustrated via simulation studies and by application to a well known benchmark dataset.
引用
收藏
页码:209 / 227
页数:18
相关论文
共 50 条
  • [41] A Bayesian approach to relaxing parameter restrictions in multivariate GARCH models
    Hudson, Brent G.
    Gerlach, Richard H.
    TEST, 2008, 17 (03) : 606 - 627
  • [42] Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach
    Guohua Feng
    Chuan Wang
    Xibin Zhang
    Journal of Productivity Analysis, 2019, 51 : 1 - 19
  • [43] Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
    Abanto-Valle, Carlos A.
    Garrafa-Aragon, Hernan B.
    REVISTA ECONOMIA, 2019, 42 (83): : 32 - 53
  • [44] Analysis of deforestation and protected area effectiveness in Indonesia: A comparison of Bayesian spatial models
    Brun, Cyrille
    Cook, Alex R.
    Lee, Janice Ser Huay
    Wich, Serge A.
    Koh, Lian Pin
    Carrasco, Luis R.
    GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2015, 31 : 285 - 295
  • [45] Prediction of Pipe-Jacking Forces Using a Bayesian Updating Approach
    Sheil, Brian B.
    Suryasentana, Stephen K.
    Templeman, Jack O.
    Phillips, Bryn M.
    Cheng, Wen-Chieh
    Zhang, Limin
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2022, 148 (01)
  • [46] Coastline Kriging: A Bayesian Approach
    Abdalla, Nada
    Banerjee, Sudipto
    Ramachandran, Gurumurthy
    Stenzel, Mark
    Stewart, Patricia A.
    ANNALS OF WORK EXPOSURES AND HEALTH, 2018, 62 (07) : 818 - 827
  • [47] Applying hierarchical Bayesian neural network approach in failure time prediction
    Chin, CC
    Liaw, CY
    Wu, CM
    PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2005, : 205 - 208
  • [48] Mapping soil water retention curves via spatial Bayesian hierarchical models
    Yang, Wen-Hsi
    Clifford, David
    Minasny, Budiman
    JOURNAL OF HYDROLOGY, 2015, 524 : 768 - 779
  • [49] A Bayesian approach to real-time spatiotemporal prediction systems for bronchiolitis
    Heaton, Matthew J.
    Ingersoll, Celeste
    Berrett, Candace
    Hartman, Brian M.
    Sloan, Chantel
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2021, 38
  • [50] A Bayesian approach for parameter estimation and prediction using a computationally intensive model
    Higdon, Dave
    McDonnell, Jordan D.
    Schunck, Nicolas
    Sarich, Jason
    Wild, Stefan M.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2015, 42 (03)