A Bayesian Approach to Spatial Prediction With Flexible Variogram Models

被引:0
|
作者
Stefano Castruccio
Luca Bonaventura
Laura M. Sangalli
机构
[1] The University of Chicago,Department of Statistics
[2] Politecnico di Milano,MOX—Dipartimento di Matematica
来源
Journal of Agricultural, Biological, and Environmental Statistics | 2012年 / 17卷
关键词
Markov chain Monte Carlo; Kriging; Variogram estimation;
D O I
暂无
中图分类号
学科分类号
摘要
A Bayesian approach to covariance estimation and spatial prediction based on flexible variogram models is introduced. In particular, we consider black-box kriging models. These variogram models do not require restrictive assumptions on the functional shape of the variogram; furthermore, they can handle quite naturally non isotropic random fields. The proposed Bayesian approach does not require the computation of an empirical variogram estimator, thus avoiding the arbitrariness implied in the construction of the empirical variogram itself. Moreover, it provides a complete assessment of the uncertainty in the variogram estimation. The advantages of this approach are illustrated via simulation studies and by application to a well known benchmark dataset.
引用
收藏
页码:209 / 227
页数:18
相关论文
共 50 条
  • [21] BLP approach for the estimation of variogram parameters
    Huang, Bing
    Hu, Tiesong
    ENVIRONMENTAL EARTH SCIENCES, 2009, 59 (02) : 421 - 428
  • [22] A simple approach to fitting Bayesian survival models
    Gustafson, P
    Aeschliman, D
    Levy, AR
    LIFETIME DATA ANALYSIS, 2003, 9 (01) : 5 - 19
  • [23] Bayesian data fusion in a spatial prediction context: a general formulation
    P. Bogaert
    D. Fasbender
    Stochastic Environmental Research and Risk Assessment, 2007, 21 : 695 - 709
  • [24] A Simple Approach to Fitting Bayesian Survival Models
    Paul Gustafson
    Dana Aeschliman
    Adrian R. Levy
    Lifetime Data Analysis, 2003, 9 : 5 - 19
  • [25] Bayesian data fusion in a spatial prediction context: a general formulation
    Bogaert, P.
    Fasbender, D.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2007, 21 (06) : 695 - 709
  • [26] Capturing flexible heterogeneous utility curves: A Bayesian spline approach
    Kim, Jin Gyo
    Menzefricke, Ulrich
    Feinberg, Fred M.
    MANAGEMENT SCIENCE, 2007, 53 (02) : 340 - 354
  • [27] Bayesian multivariate spatial models for roadway traffic crash mapping
    Song, JJ
    Ghosh, A
    Miaou, S
    Mallick, B
    JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (01) : 246 - 273
  • [28] PREDICTION DIAGNOSTICS FOR SPATIAL LINEAR-MODELS
    CHRISTENSEN, R
    JOHNSON, W
    PEARSON, LM
    BIOMETRIKA, 1992, 79 (03) : 583 - 591
  • [29] Bayesian Item Response Theory Models With Flexible Generalized Logit Links
    Zhang, Jiwei
    Zhang, Ying-Ying
    Tao, Jian
    Chen, Ming-Hui
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2022, 46 (05) : 382 - 405
  • [30] A Bayesian Logistic Regression approach in Asthma Persistence Prediction
    Spyroglou, Ioannis I.
    Spoeck, Gunter
    Chatzimichail, Eleni A.
    Rigas, Alexandros G.
    Paraskakis, E. N.
    EPIDEMIOLOGY BIOSTATISTICS AND PUBLIC HEALTH, 2018, 15 (01): : e12777 - 1