Bohr–Rogosinski Inequalities for Bounded Analytic Functions

被引:0
作者
Seraj A. Alkhaleefah
Ilgiz R. Kayumov
Saminathan Ponnusamy
机构
[1] N. I. Lobachevskii Institute of Mathematics and Mechanics,
[2] Kazan (Volga Region) Federal University,undefined
[3] Department of Mathematics,undefined
[4] Indian Institute of Technology Madras,undefined
来源
Lobachevskii Journal of Mathematics | 2020年 / 41卷
关键词
bounded analytic function; Bohr inequality; Bohr radius; Rogosinski inequality; Rogosinski radius; harmonic mappings;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2110 / 2119
页数:9
相关论文
共 44 条
[1]  
Rogosinski W.(1923)Über Bildschranken bei Potenzreihen und ihren Abschnitten Math. Z. 17 260-276
[2]  
Bohr H.(1914)A theorem concerning power series Proc. London Math. Soc. 13 1-5
[3]  
Bénéteau C.(2004)Remarks on the Bohr phenomenon Comput. Methods Funct. Theory 4 1-19
[4]  
Dahlner A.(2002)On Bohr’s inequality Proc. London Math. Soc. 85 493-512
[5]  
Khavinson D.(2004)Bohr’s inequality for uniform algebras Proc. Am. Math. Soc. 132 3577-3579
[6]  
Paulsen V. I.(2018)Bohr’s inequalities for the analytic functions with lacunary series and harmonic functions J. Math. Anal. Appl. 465 857-871
[7]  
Popescu G.(2019)On the Bohr inequality with a fixed zero coefficient Proc. Am. Math. Soc. 147 5263-5274
[8]  
Singh D.(2018)Bohr phenomenon for subordinating families of certain univalent functions J. Math. Anal. Appl. 462 1087-1098
[9]  
Paulsen V. I.(2017)A note on the Bohr’s phenomenon for power series J. Math. Anal. Appl. 449 154-167
[10]  
Singh D.(2013)Bohr’s phenomenon for analytic functions and the hyperbolic metric Math. Nachr. 286 1059-1065