Nonlinear Analysis of Radial Evolution of Solar Wind in the Inner Heliosphere

被引:0
作者
K. Kiran
K. C. Ajithprasad
V. M. Ananda Kumar
K. P. Harikrishnan
机构
[1] M. G. College,Department of Physics
[2] Cochin College,Department of Physics
来源
Solar Physics | 2021年 / 296卷
关键词
Solar wind; Waves, Alfvén; Turbulence;
D O I
暂无
中图分类号
学科分类号
摘要
We analyzed the radial evolution of solar wind in the inner heliosphere using nonlinear time series tools such as correlation dimension D2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{2}$\end{document}, correlation entropy K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{2}$\end{document} and multifractal analysis, to get information regarding the inherent nonlinearity associated with the solar wind data and to know how it is affected by the radial distance from the Sun. Our study provides some detailed information regarding the change of dynamics of the fast solar wind with radial distance in the inner heliosphere, apart from confirming the previous observation about the chaotic nature in the dynamics of the slow solar wind. Also we found that the fast wind in the inner heliosphere is dominated by stochastic fluctuations. As the wind is flowing radially away from the Sun, stochastic fluctuation in the fast wind decreases. The stochastic fluctuation present in the data is a clear indication of the Alfvénic fluctuation associated with the solar wind. Finally, our analysis suggests that Alfvénic fluctuation strongly influences the solar wind as it flows radially outwards to mask the nonlinear component associated with the fast wind.
引用
收藏
相关论文
共 141 条
[1]  
Abarbanel H.(1996)Analysis of observed chaotic data Phys. Today 49 81-undefined
[2]  
Gollub J.(1993)The analysis of observed chaotic data in physical systems Rev. Mod. Phys. 65 1331-undefined
[3]  
Abarbanel H.D.(1989)Determination of Phys. Rev. A 40 3954-undefined
[4]  
Brown R.(2013) for a limited random point set Living Rev. Solar Phys. 10 2-undefined
[5]  
Sidorowich J.J.(1991)The solar wind as a turbulence laboratory Geophys. Res. Lett. 18 69-undefined
[6]  
Tsimring L.S.(2001)Multifractal structure of the interplanetary magnetic field: Voyager 2 observations near 25 AU, 1987–1988 J. Geophys. Res. 106 15917-undefined
[7]  
Atmanspacher H.(1993)Lognormal and multifractal distributions of the heliospheric magnetic field Phys. Rev. Lett. 71 1546-undefined
[8]  
Scheingraber H.(1994)Cascade model for intermittency in fully developed magnetohydrodynamic turbulence Physica D 79 174-undefined
[9]  
Wiedenmann G.(2007)Noise reduction schemes for chaotic time series Science 318 1574-undefined
[10]  
Bruno R.(1983)Chromospheric Alfvénic waves strong enough to power the solar wind Phys. Rev. Lett. 50 346-undefined