A Liouville theorem for stationary and ergodic ensembles of parabolic systems

被引:0
|
作者
Peter Bella
Alberto Chiarini
Benjamin Fehrman
机构
[1] Universität Leipzig,Mathematisches Institut
[2] Université d’Aix-Marseille,undefined
[3] Max Planck Institute for Mathematics in the Sciences,undefined
来源
Probability Theory and Related Fields | 2019年 / 173卷
关键词
Stochastic homogenization; Liouville theorem; Large-scale regularity; Parabolic equation; Parabolic system; 35B27; 35B53; 35K10; 35K40; 60H25; 60K37;
D O I
暂无
中图分类号
学科分类号
摘要
A first-order Liouville theorem is obtained for random ensembles of uniformly parabolic systems under the mere qualitative assumptions of stationarity and ergodicity. Furthermore, the paper establishes, almost surely, an intrinsic large-scale C1,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}^{1,\alpha }$$\end{document}-regularity estimate for caloric functions.
引用
收藏
页码:759 / 812
页数:53
相关论文
共 50 条
  • [1] A Liouville theorem for stationary and ergodic ensembles of parabolic systems
    Bella, Peter
    Chiarini, Alberto
    Fehrman, Benjamin
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 173 (3-4) : 759 - 812
  • [2] A LIOUVILLE THEOREM FOR ELLIPTIC SYSTEMS WITH DEGENERATE ERGODIC COEFFICIENTS
    Bella, Peter
    Fehrman, Benjamin
    Otto, Felix
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (03): : 1379 - 1422
  • [3] A LIOUVILLE-TYPE THEOREM FOR COOPERATIVE PARABOLIC SYSTEMS
    Anh Tuan Duong
    Quoc Hung Phan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (02) : 823 - 833
  • [4] THEOREM OF LIOUVILLE TYPE FOR PARABOLIC EQUATIONS
    GUSAROV, AL
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1975, (03): : 62 - 70
  • [5] NON-STATIONARY VERSION OF ERGODIC THEOREM FOR RANDOM DYNAMICAL SYSTEMS
    Gorodetski, Anton
    Kleptsyn, Victor
    MOSCOW MATHEMATICAL JOURNAL, 2023, 23 (04) : 515 - 532
  • [6] Homogenization of Liouville Equations Beyond a Stationary Ergodic Setting
    Taynara Andrade
    Wladimir Neves
    Jean Silva
    Archive for Rational Mechanics and Analysis, 2020, 237 : 999 - 1040
  • [7] Homogenization of Liouville Equations Beyond a Stationary Ergodic Setting
    Andrade, Taynara
    Neves, Wladimir
    Silva, Jean
    Le Bris, C.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (2) : 999 - 1040
  • [8] An intrinsic Liouville theorem for degenerate parabolic equations
    Eduardo V. Teixeira
    José Miguel Urbano
    Archiv der Mathematik, 2014, 102 : 483 - 487
  • [9] An intrinsic Liouville theorem for degenerate parabolic equations
    Teixeira, Eduardo V.
    Urbano, Jose Miguel
    ARCHIV DER MATHEMATIK, 2014, 102 (05) : 483 - 487
  • [10] LIOUVILLE THEOREM FOR DEGENERATE ELLIPTIC AND PARABOLIC EQUATIONS
    KUZMENKO, YT
    MATHEMATICAL NOTES, 1981, 29 (3-4) : 203 - 209