Dynamic Properties of a Nonlinear Viscoelastic Kirchhoff-Type Equation with Acoustic Control Boundary Conditions. I

被引:0
作者
Fushan Li
Shuai Xi
机构
[1] Qufu Normal University,
来源
Mathematical Notes | 2019年 / 106卷
关键词
Kirchhoff-type equation; acoustic boundary condition; original energy; energy decay;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the nonlinear viscoelastic Kirchhoff-type equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_{tt}} - M(||\nabla u||_2^2)\Delta u + \int_0^t {h(t - s)\Delta u(s)ds + a|{u_t}{|^{m - 2}}{u_t} = |u{|^{p - 2}}u} $$\end{document} with initial conditions and acoustic boundary conditions. We show that, depending on the properties of convolution kernel h at infinity, the energy of the solution decays exponentially or polynomially as t → + ∞. Our approach is based on integral inequalities and multiplier techniques. Instead of using a Lyapunov-type technique for some perturbed energy, we concentrate on the original energy, showing that it satisfies a nonlinear integral inequality which, in turn, yields the final decay estimate.
引用
收藏
页码:814 / 832
页数:18
相关论文
共 55 条
[1]  
Cavalcanti M M(2002)Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping Electron. J. Differ. Equations 44 1-14
[2]  
Domingos Cavalcanti V N(2002)Global existence and asymptotic stability for viscoelastic problems Differential Integral Equations 15 1-14
[3]  
Soriano J A(2003)“Frictional versus viscoelastic damping in a semilinearwave equation,” SIAMJ. Control Optim. 42 1310-1324
[4]  
Cavalcanti M M(2002)Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping Electron. J. Differ. Equations 88 1-14
[5]  
Domingos Cavalcanti V N(1990)“On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms,” Funkcialaj Ekvacioj 33 151-159
[6]  
Soriano J A(2002)Existence globale et comportement asymptotique des solutions des equations de Kirchhoff moyennement degenerees avec un terme nonlinear dissipatif Funkcialaj Ekvacioj 43 1-14
[7]  
Cavalcanti M M(2002)Global existence, decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings J. Differ. Equations 137 1-14
[8]  
Oquendo H P(2002)On the exponential decay of solutions for some modelling equations of Kirchhoff-type with strong dissipation Appl. Math. 1 1-14
[9]  
Berrimi S(2002)Blow-up of solutions for some non-linear wave equations of Kirchhoff-type with some dissipation Nonlinear Anal. 65 1-14
[10]  
Messaoudi S A(2011)Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation Cent. Eur. J. Math. 9 686-698