Investigation of Magnetic Memory Signals Induced by Dynamic Bending Load in Fatigue Crack Propagation Process of Structural Steel

被引:0
作者
Haihong Huang
Shilin Jiang
Rujun Liu
Zhifeng Liu
机构
[1] School of Mechanical and Automotive Engineering,
[2] Hefei University of Technology,undefined
来源
Journal of Nondestructive Evaluation | 2014年 / 33卷
关键词
Metal magnetic memory testing; Dynamic bending load; X-ray diffraction; Stress concentration; Fatigue crack propagation;
D O I
暂无
中图分类号
学科分类号
摘要
Metal magnetic memory effect, induced by applied stress under the excitation of the geomagnetic field, has attracted a lot of attentions due to its unique advantages of stress concentration identification and early damage detection for ferromagnetic materials. To further investigate the regularity of magnetic memory signals in the fatigue crack propagation process under the dynamic bending load, the surface magnetic field intensity Hp(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{p}(y)$$\end{document} of ferromagnetic structural steel was measured throughout the dynamic three-point bending fatigue tests; variation of Hp(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{p}(y)$$\end{document} and its maximum gradient Kmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{max}$$\end{document} were studied; meanwhile the possibility of using Kmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{max}$$\end{document} to predict the fatigue crack propagation was discussed. The results showed that Hp(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{p}(y)$$\end{document} was relatively stable at different loading cycles and its maximum value appeared at the fatigue crack area before the specimen fractured; instead the Kmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{max}$$\end{document} increased exponentially with the increase of loading cycles, and an approximate linear relationship was found between Kmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{max}$$\end{document} and crack length 2a. The cause for this phenomenon was also discussed.
引用
收藏
页码:407 / 412
页数:5
相关论文
共 82 条
  • [1] Yi S(1995)Influence of defect shape on damage evolution and fracture behavior of ductile materials Eng. Fract. Mech. 51 337-347
  • [2] Eripret C(1999)High cycle fatigue crack initiation and propagation behaviour of high strength spring steel wires Fatigue Fract. Eng. Mater. Struct. 22 673-677
  • [3] Rousselier G(1997)A study of metal properties using the method of magnetic memory Met. Sci. Heat Treat. 39 401-405
  • [4] Wang QY(2007)Residual magnetic field sensing for stress measurement Sens. Actuators A 135 381-387
  • [5] Berard JY(2008)Variation of stress induced magnetic signals during tensile testing of ferromagnetic steels NDT E Int. 41 184-189
  • [6] Rathery S(2009)Stress dependence of the spontaneous stray field signals of ferromagnetic steel NDT E Int. 42 323-327
  • [7] Bathias C(2013)Metal magnetic memory signal response to plastic deformation of low carbon steel NDT E Int. 55 42-46
  • [8] Doubov AA(2010)Metal magnetic memory effect caused by static tension load in a case-hardened steel J. Magn. Magn. Mater. 322 413-416
  • [9] Wilson JW(2010)Quantitative study of metal magnetic memory signal versus local stress concentration NDT E Int. 43 513-518
  • [10] Tian GY(2008)Analysis of changes in residual magnetic field in loaded notched samples NDT E Int. 41 570-576