Self-overlays and symmetries of Julia sets of expanding maps

被引:0
作者
José Ignacio Extremiana Aldana
Luis Javier Hernández Paricio
María Teresa Rivas Rodríguez
机构
[1] Universidad de La Rioja,Departamento de Matemáticas y Computación
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2018年 / 112卷
关键词
Overlay; Julia set; Fundamental pro-groupoid; Fundamental shape group; Iterated sub-division; Rational map; Global multiplier; 57M12; 54C56; 37F50;
D O I
暂无
中图分类号
学科分类号
摘要
When a semi-flow is induced by a d-fold branched covering f:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f:M \rightarrow M $$\end{document} defined on a Riemannian manifold M, the associated Julia set J(f) is a compact invariant subset of M and, therefore, there exists an induced restriction f|J(f):J(f)→J(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f | _ {J (f)} :J (f) \rightarrow J (f) $$\end{document}. In order to construct an inverse system of regular sub-complexes whose inverse limit is J(f) we use computational techniques to iterate subdivision processes for a regular CW-structure given in M. The invariants of this inverse system can be used to study some topology and shape properties of J(f) . In particular, for the case of an expanding rational map we have constructed a resolution using global multipliers. The advantage of this resolution is that we can develop many algorithms that give an explicit description of the complexes of this resolution and implemented versions of this procedure can be used to give nice visualizations of the Julia set or to compute its shape invariants. If J(f) does not contain critical points of f, the restriction f|J(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f | _ {J (f)} $$\end{document} inherits a d-fold overlay structure which is the limit of d-fold coverings and the classification of this overlay structure can be given in terms of representations of the fundamental pro-groupoid of J(f) in the symmetric group Σd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma _d$$\end{document}.
引用
收藏
页码:829 / 848
页数:19
相关论文
共 44 条
[1]  
Del Río A(2009)S-types of global towers of spaces and exterior spaces Appl. Categ. Struct. 17 287-301
[2]  
Hernández LJ(1972)On shape Fund. Math. 74 47-71
[3]  
Rivas MT(2015)Graphical representations for the homogeneous bi-variate Newton’s method Appl. Math. Comput. 269 988-1006
[4]  
Fox RH(2013)Limit and end functors of dynamical systems via exterior spaces Bull. Belg. Math. Soc. Simon Stevin 20 937-959
[5]  
García-Calcines JM(2014)A completion construction for continuous dynamical systems Topol. Methods Nonlinear Anal. 44 497-526
[6]  
Gutiérrez JM(2017)Omega limits, prolongational limits and almost periodic points of a continuous flow via exterior spaces Glasnik Matematicki 52 295-329
[7]  
Hernández LJ(2005)Shape of global attractors in topological spaces Nonlinear Anal. Theory Methods Appl. 60 837-847
[8]  
Rivas MT(2014)Influence of the multiplicity of the roots on the basins of attraction of Newton’s method Numer. Algorithms 66 431-455
[9]  
García-Calcines JM(1998)Fundamental pro-groupoids and covering projections Fund. Math. 156 1-31
[10]  
Hernández LJ(2016)Bivariate Newton–Raphson method and toroidal attraction basins Numer. Algorithms 71 349-381