Hausdorff measure of noncompactness of matrix operators on some sequence spaces of a double sequential band matrix

被引:0
作者
Elahe Abyar
Mohammad Bagher Ghaemi
机构
[1] Islamic Azad University,
来源
Journal of Inequalities and Applications | / 2015卷
关键词
Hausdorff measure of noncompactness; double sequential matrix; sequence space; paranormed space;
D O I
暂无
中图分类号
学科分类号
摘要
The sequence spaces l∞(B˜,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_{\infty}(\tilde{B},p)$\end{document}, c(B˜,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c(\tilde{B},p)$\end{document}, and c0(B˜,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c_{0}(\tilde{B},p)$\end{document} of non-absolute type derived by the double sequential band matrix B(r˜,s˜)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B(\tilde{r},\tilde{s})$\end{document} have recently been defined. In this work, we establish identities or estimates for the operator norms and the Hausdorff measure of noncompactness of certain matrix operators on these spaces that are paranormed spaces. Further, we find the necessary and sufficient condition for compactness of LA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{A}$\end{document} in the class (X,l∞(q))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(X,l_{\infty}(q))$\end{document} (where X is any of the spaces l∞(B˜,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_{\infty}(\tilde{B},p)$\end{document}, c(B˜,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c(\tilde{B},p)$\end{document} or c0(B˜,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c_{0}(\tilde {B},p)$\end{document}) and characterize some classes of compact operators on these spaces by using the Hausdorff measure of the noncompactness technique.
引用
收藏
相关论文
共 72 条
[11]  
Racocevic V(2012), Linear Algebra Appl. 436 279-285
[12]  
Malkowsky E(2011) ( Iran. J. Sci. Technol. 35 67-81
[13]  
Rakocevic V(2012)) and certain J. Math. Anal. Appl. 391 797-813
[14]  
Zivkovic S(2013)-spaces Acta Math. Sci. 33 394-408
[15]  
Alotaibi A(2014)Compact operators on some Fibonacci difference sequence spaces Acta Math. Sci. 34 1299-1309
[16]  
Mursaleen M(2010)The characterization of compact operators on spaces of strongly summable and bounded sequences Comput. Math. Appl. 60 988-999
[17]  
Alamri BAS(2011)Applications of the Hausdorff measure of noncompactness in some sequence spaces of weighted means Comput. Math. Appl. 61 1473-1481
[18]  
Mohiuddine SA(2011)Compactness of matrix operators on some new difference sequence spaces Math. Comput. Model. 54 316-322
[19]  
Basar F(1969)On compact operators on the Riesz J. Lond. Math. Soc. 1 96-111
[20]  
Malkowsky E(2014) difference sequence space J. Math. Anal. Appl. 417 1-29