Tannakian duality for Anderson–Drinfeld motives and algebraic independence of Carlitz logarithms

被引:0
|
作者
Matthew A. Papanikolas
机构
[1] Texas A&M University,Department of Mathematics
来源
Inventiones mathematicae | 2008年 / 171卷
关键词
Exact Sequence; Galois Group; Fundamental Matrix; Galois Theory; Coordinate Ring;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a theory of Tannakian Galois groups for t-motives and relate this to the theory of Frobenius semilinear difference equations. We show that the transcendence degree of the period matrix associated to a given t-motive is equal to the dimension of its Galois group. Using this result we prove that Carlitz logarithms of algebraic functions that are linearly independent over the rational function field are algebraically independent.
引用
收藏
页码:123 / 174
页数:51
相关论文
empty
未找到相关数据