Study of Noise Properties in Nanoscale Electronic Devices Using Quantum Trajectories

被引:0
|
作者
Oriols X. [1 ]
Martín F. [1 ]
Suñé J. [1 ]
机构
[1] Departament d'Enginyeria Electrònica—ETSE, Universitat Autónoma de Barcelona, Bellaterra, Barcelona
关键词
Bohm trajectories; mesoscopic transport; Monte Carlo technique; noise;
D O I
10.1023/A:1020755509089
中图分类号
学科分类号
摘要
Noise properties in nanoscale devices are studied extending, via quantum trajectories, the classical particle Monte Carlo techniques to devices in which quantum non-local effects are important. This approach can be used to study noise in a wide range of frequencies and can also be easily coupled to a Poisson solver to study long range Coulomb effects in noise characteristics. As a numerical example, we have studied noise in a tunneling barrier showing that the results obtained within our approach exactly reproduce those of the standard Landauer-Buttiker formalism in the zero frequency limit. © 2002, Kluwer Academic Publishers.
引用
收藏
页码:43 / 48
页数:5
相关论文
共 50 条
  • [1] Approach to study the noise properties in nanoscale electronic devices
    Oriols, X
    Martín, F
    Suñé, J
    APPLIED PHYSICS LETTERS, 2001, 79 (11) : 1703 - 1705
  • [2] Nanoscale engineering for reducing phase noise in electronic devices
    Handel, PH
    Tournier, AG
    PROCEEDINGS OF THE IEEE, 2005, 93 (10) : 1784 - 1814
  • [3] Modeling Techniques for Electronic Noise and Process Variability in Nanoscale Devices
    Guerrieri, Simona Donati
    Bonani, Fabrizio
    Ghione, Giovanni
    2018 IEEE 13TH NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE (NMDC), 2018, : 244 - 248
  • [4] ON QUANTUM HYDRODYNAMIC MODELS FOR ELECTRONIC TRANSPORT IN NANOSCALE SEMICONDUCTOR DEVICES
    Tulcan-Paulescu, Eugenia
    Comanescu, Dan
    Paulescu, Marius
    MODERN PHYSICS LETTERS B, 2010, 24 (4-5): : 401 - 409
  • [5] Nanoscale Electronic Synapses Using Phase Change Devices
    Jackson, Bryan L.
    Rajendran, Bipin
    Corrado, Gregory S.
    Breitwisch, Matthew
    Burr, Geoffrey W.
    Cheek, Roger
    Gopalakrishnan, Kailash
    Raoux, Simone
    Rettner, Charles T.
    Padilla, Alvaro
    Schrott, Alex G.
    Shenoy, Rohit S.
    Kurdi, Buelent N.
    Lam, Chung H.
    Modha, Dharmendra S.
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2013, 9 (02)
  • [6] R-matrix theory of quantum transport in nanoscale electronic devices
    Mil'nikov, Gennady
    Mori, Nobuya
    Kamakura, Yoshinari
    Ezaki, Tatsuya
    APPLIED PHYSICS EXPRESS, 2008, 1 (06) : 0630011 - 0630013
  • [7] Standing friedel waves: A quantum probe of electronic states in nanoscale devices
    Lu, Jun-Qiang
    Zhang, X. -G.
    Pantelides, Sokrates T.
    PHYSICAL REVIEW LETTERS, 2007, 99 (22)
  • [8] A view of nanoscale electronic devices
    Morkoç, H
    Taur, Y
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 42 : S555 - S573
  • [9] Nanoscale electronic noise measurements
    Fumagalli, L
    Casuso, I
    Ferrari, G
    Gomila, G
    Sampietro, M
    Samitier, J
    Noise and Fluctuations, 2005, 780 : 575 - 578
  • [10] Self-consistent simulation of quantum shot noise in nanoscale electron devices
    Oriols, X
    Trois, A
    Blouin, G
    APPLIED PHYSICS LETTERS, 2004, 85 (16) : 3596 - 3598