Discussion on Matrices Fixed Nullity in Complement Problem of Operator Matrices

被引:0
作者
Zhang, Tengjie [1 ]
Cao, Xiaohong [1 ]
Dong, Jiong [2 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China
[2] Changzhi Univ, Dept Math, Changzhi 046011, Peoples R China
关键词
Fredholm operator; Upper triangular operator matrix; Invertible operator; Left invertible operator; APPROXIMATE POINT SPECTRA; WEYLS THEOREM; INVERTIBILITY; INTERSECTION;
D O I
10.1007/s11785-024-01542-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H and K be separable infinite-dimensional Hilbert spaces, and let A is an element of B (H) and B is an element of B(K) be given operators. We denote by MC the operator acting on H circle plus K of the form M-C = (AC(0B)). In this paper, some necessary and sufficient conditions are obtained for M-C to be a Fredholm operator with n(M-C)>0 and ind(M-C)<0 for some left invertible or invertible operator C is an element of B (K,H). Meanwhile, for the nullity of M-C, we discuss the relationship between n(M-C) and n(A) by different method. As the application of above results, the weak properties of Weyl's theorem for upper triangular operator matrices are explored.
引用
收藏
页数:20
相关论文
共 19 条
  • [1] Aiena P., 2004, FREDHOLM LOCAL SPECT
  • [2] Semi-fredholm spectrum and Weyl's theorem for operator matrices
    Cao, XH
    Guo, MZ
    Meng, B
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (01) : 169 - 178
  • [3] Essential approximate point spectra and Weyl's theorem for operator matrices
    Cao, XH
    Meng, B
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (02) : 759 - 771
  • [4] Chen A, 2012, J OPERAT THEOR, V67, P207
  • [5] RIGHT AND LEFT FREDHOLM OPERATOR MATRICES
    Djordjevic, Dragan S.
    Kolundzija, Milica Z.
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (03) : 1021 - 1027
  • [6] Consistent in invertibility operators and SVEP
    Djordjevic, Dragan S.
    Duggal, Bhagwati P.
    Harte, Robin E.
    [J]. FILOMAT, 2013, 27 (05) : 767 - 776
  • [7] CFI upper triangular operator matrices
    Dong, Jiong
    Cao, Xiaohong
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (07) : 1217 - 1227
  • [8] Closedness of ranges of upper-triangular operators
    Dou, Yan-Ni
    Du, Gui-Chun
    Shao, Chun-Fang
    Du, Hong-Ke
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (01) : 13 - 20
  • [9] PERTURBATION OF SPECTRUMS OF 2 X-2 OPERATOR MATRICES
    DU, HK
    PAN, J
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (03) : 761 - 766
  • [10] Invertibility of Operator Matrices on a Banach Space
    Hai, Guojun
    Chen, Alatancang
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (06) : 1807 - 1818