Fast homoclinic orbits for a class of damped vibration systems

被引:0
|
作者
Wafa Selmi
Mohsen Timoumi
机构
[1] Faculty of Sciences of Monastir,Department of Mathematics
来源
Ricerche di Matematica | 2022年 / 71卷
关键词
Critical point; Damped vibration system; Homoclinic orbit; 34C37; 35J61; 58E30;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence of fast homoclinic orbits for the following damped vibration system u¨(t)+q(t)u˙(t)+∇V(t,u(t))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{u}(t)+q(t)\dot{u}(t)+\nabla V(t,u(t))=0$$\end{document}; where q∈C(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in C(\mathbb {R},\mathbb {R})$$\end{document} and V∈C1(R×RN,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\in C^{1}(\mathbb {R}\times \mathbb {R}^{N},\mathbb {R})$$\end{document} is of the type V(t,x)=-K(t,x)+W(t,x). A map K is not a quadratic form in x and W(t, x) is superquadratic in x.
引用
收藏
页码:431 / 440
页数:9
相关论文
共 50 条
  • [1] Fast homoclinic orbits for a class of damped vibration systems
    Selmi, Wafa
    Timoumi, Mohsen
    RICERCHE DI MATEMATICA, 2022, 71 (02) : 431 - 440
  • [2] On homoclinic orbits for a class of damped vibration systems
    Juntao Sun
    Juan J Nieto
    Mario Otero-Novoa
    Advances in Difference Equations, 2012
  • [3] On homoclinic orbits for a class of damped vibration systems
    Sun, Juntao
    Nieto, Juan J.
    Otero-Novoa, Mario
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [4] INFINITELY MANY FAST HOMOCLINIC ORBITS FOR A CLASS OF SUPERQUADRATIC DAMPED VIBRATION SYSTEMS
    Timoumi, Mohsen
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020, 2020
  • [5] Even homoclinic orbits for a class of damped vibration systems
    Fathi, Khelifi
    Timoumi, Mohsen
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (06): : 1111 - 1125
  • [6] On Ground-State Homoclinic Orbits of a Class of Superquadratic Damped Vibration Systems
    Mohsen Timoumi
    Mediterranean Journal of Mathematics, 2018, 15
  • [7] On Ground-State Homoclinic Orbits of a Class of Superquadratic Damped Vibration Systems
    Timoumi, Mohsen
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [8] Homoclinic solutions for a class of damped vibration systems
    Fathi, Khelifi
    Mohsen, Timoumi
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2019, 46 (02): : 223 - 235
  • [9] Fast homoclinic solutions for a class of damped vibration problems
    Chen, Peng
    Tang, Xianhua
    Agarwal, Ravi P.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) : 6053 - 6065
  • [10] Infinitely many fast homoclinic solutions for a class of superquadratic damped vibration systems
    Mohsen Timoumi
    Journal of Elliptic and Parabolic Equations, 2020, 6 : 451 - 471