On \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SL(2, \mathbb R)}$$\end{document} Valued Smooth Proximal Cocycles and Cocycles with Positive Lyapunov Exponents Over Irrational Rotation Flows

被引:0
作者
Mahesh Nerurkar
机构
[1] Rutgers University,Department of Mathematics
关键词
Cocycles; Lyapunov exponents; Irrational rotations; Proximal extensions; Fast periodic approximation; 37B55; 34A30; 58F15;
D O I
10.1007/s10884-011-9215-4
中图分类号
学科分类号
摘要
Consider the class of Cr-smooth \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SL(2, \mathbb R)}$$\end{document} valued cocycles, based on the rotation flow on the two torus with irrational rotation number α. We show that in this class, (i) cocycles with positive Lyapunov exponents are dense and (ii) cocycles that are either uniformly hyperbolic or proximal are generic, if α satisfies the following Liouville type condition: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left|\alpha-\frac{p_n}{q_n}\right| \leq C {\rm exp} (-q^{r+1+\kappa}_{n})$$\end{document}, where C >  0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < \kappa <1 }$$\end{document} are some constants and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{P_n}{q_n}}$$\end{document} is some sequence of irreducible fractions.
引用
收藏
页码:451 / 473
页数:22
相关论文
共 25 条
  • [11] Fayad B.(1991)Two dimensional almost periodic linear system with proximal and recurrent behaviour J. Differ. Equ. 91 88-110
  • [12] Krikorian R.(1982)Exponential dichotomy, rotation number and linear differential operators with bounded coefficients Comm. Math. Phys. 84 403-438
  • [13] Johnson R.(1987)Hopf bifurcation from non-periodic solutions of differential equations I-Linear Theory Siam J. Math. Anal. 18 1-33
  • [14] Johnson R.(1992)Cantor spectrum for the quasi periodic Schrödinger equation Ergod. Theory Dyn. Syst. 12 319-331
  • [15] Johnson R.(1987)The rotation number for almost periodic potentials Proc. Am. Math. Soc. 100 739-743
  • [16] Johnson R.(1998)Ergodic properties of linear dynamical systems Contemp. Math. Ser. AMS 215 265-278
  • [17] Johnson R.(2008)Positive Lyapunov exponents for a dense set of bounded measurable Ann. Math. 107 643-680
  • [18] Moser J.(undefined) cocycles undefined undefined undefined-undefined
  • [19] Johnson R.(undefined)Recurrent proximal linear differential systems with almost periodic coefficients’ undefined undefined undefined-undefined
  • [20] Palmer K.(undefined)Positive exponents for a dense set of continuous cocycles which arise as solutions to strongly accessible linear differential systems undefined undefined undefined-undefined