On \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SL(2, \mathbb R)}$$\end{document} Valued Smooth Proximal Cocycles and Cocycles with Positive Lyapunov Exponents Over Irrational Rotation Flows

被引:0
作者
Mahesh Nerurkar
机构
[1] Rutgers University,Department of Mathematics
关键词
Cocycles; Lyapunov exponents; Irrational rotations; Proximal extensions; Fast periodic approximation; 37B55; 34A30; 58F15;
D O I
10.1007/s10884-011-9215-4
中图分类号
学科分类号
摘要
Consider the class of Cr-smooth \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SL(2, \mathbb R)}$$\end{document} valued cocycles, based on the rotation flow on the two torus with irrational rotation number α. We show that in this class, (i) cocycles with positive Lyapunov exponents are dense and (ii) cocycles that are either uniformly hyperbolic or proximal are generic, if α satisfies the following Liouville type condition: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left|\alpha-\frac{p_n}{q_n}\right| \leq C {\rm exp} (-q^{r+1+\kappa}_{n})$$\end{document}, where C >  0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < \kappa <1 }$$\end{document} are some constants and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{P_n}{q_n}}$$\end{document} is some sequence of irreducible fractions.
引用
收藏
页码:451 / 473
页数:22
相关论文
共 25 条
  • [1] Avila A.(2009)Density of positive Lyapunov exponents for quasiperiodic J. Mod. Dyn. 3 629-634
  • [2] Bochi J.(2002) cocycles in arbitrary dimension Ergod. Theory Dyn. Syst. 22 1667-1696
  • [3] De Concini C.(1987)Genericity of zero Lyapunov exponents Ergod. Theory Dyn. Syst. 7 1-24
  • [4] Johnson R.(1999)The algebraic-geometric AKNS potentials Differ. Equ. Dyn. Syst. 7 349-370
  • [5] Fabbri R.(2002)On the Lyapunov exponent of certain Nonlin. Anal. 3 37-59
  • [6] Johnson R.(1997) valued cocycles Ann. Inst. H. Poincare Probab. Stat. 33 797-815
  • [7] Fabbri R.(2009)On the nature of the spectrum of the quasi-periodic Schrodinger operator J. Mod. Dyn. 3 479-510
  • [8] Johnson R.(1981)On the multiplicative ergodic theorem for uniquely ergodic systems Proc. AMS 82 417-422
  • [9] Pavani R.(1986)Rigidity results for quasiperiodic J. Differ. Equ. 61 54-78
  • [10] Furman A.(1989) cocycles J. Dyn. Differ. Equ. 1 179-198