Spectral Analysis and Zeta Determinant on the Deformed Spheres

被引:0
|
作者
M. Spreafico
S. Zerbini
机构
[1] ICMC-Universidade de São Paulo,Dipartimento di Fisica
[2] Universitá di Trento,undefined
[3] Gruppo Collegato di Trento,undefined
来源
Communications in Mathematical Physics | 2007年 / 273卷
关键词
Zeta Function; Deformation Parameter; Elliptic Function; Spectral Type; Dirichlet Series;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a class of singular Riemannian manifolds, the deformed spheres \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S^{N}_{k}}$$\end{document} , defined as the classical spheres with a one parameter family g[k] of singular Riemannian structures, that reduces for k = 1 to the classical metric. After giving explicit formulas for the eigenvalues and eigenfunctions of the metric Laplacian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta_{{S^{N}_{k}}}}$$\end{document} , we study the associated zeta functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\zeta(s, \Delta_{{S^{N}_{k}}})}$$\end{document} . We introduce a general method to deal with some classes of simple and double abstract zeta functions, generalizing the ones appearing in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\zeta(s,\Delta_{{S^{N}_{k}}})}$$\end{document} . An application of this method allows to obtain the main zeta invariants for these zeta functions in all dimensions, and in particular \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\zeta(0,\Delta_{{S^{N}_{k}}})}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\zeta'(0,\Delta_{{S^{N}_{k}}})}$$\end{document} . We give explicit formulas for the zeta regularized determinant in the low dimensional cases, N = 2,3, thus generalizing a result of Dowker [25], and we compute the first coefficients in the expansion of these determinants in powers of the deformation parameter k.
引用
收藏
页码:677 / 704
页数:27
相关论文
共 20 条