Isometries of absolute order unit spaces

被引:0
作者
Anil Kumar Karn
Amit Kumar
机构
[1] HBNI,School of Mathematical Sciences, National Institute of Science Education and Research
来源
Positivity | 2020年 / 24卷
关键词
Absolutely ordered space; Absolute oder unit space; Isometry; Absolute value preserving maps; Absolute matrix order unit space; Primary 46B40; Secondary 46L05; 46L30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a unital, bijective linear map between absolute order unit spaces is an isometry if and only if it is absolute value preserving. We deduce that, on (unital) JB-algebras, such maps are precisely Jordan isomorphisms. Next, we introduce the notions of absolutely matrix ordered spaces and absolute matrix order unit spaces and prove that a unital, bijective ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-linear map between absolute matrix order unit spaces is a complete isometry if, and only if, it is completely absolute value preserving. We obtain that on (unital) C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}^*$$\end{document}-algebras such maps are precisely C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}^*$$\end{document}-algebra isomorphisms.
引用
收藏
页码:1263 / 1277
页数:14
相关论文
共 25 条
[1]  
Blecher DP(2002)Logmodularity and isometries of operator algebras Trans. Am. Math. Soc. 355 1621-1646
[2]  
Labuschagne LE(1977)Injectivity and operator spaces J. Funct. Anal. 24 156-209
[3]  
Choi MD(2004)Isometries between Rev. Mat. Iberoamericana 20 156-209
[4]  
Effros EG(1943)-algebras Mat. Sb. 12 87-105
[5]  
Chu C-H(1979)On the embedding of normed rings into the ring of operators in Hilbert space Proc. Am. Math. Soc. 76 271-278
[6]  
Wong N-C(2019)Linear maps of RACSAM 113 2731-2744
[7]  
Gelfand IM(1951)-algebras preserving the absolute value Trans. Am. Math. Soc 2 505-510
[8]  
Naimark MA(1951)Contractive linear preservers of absolutely compatible pairs between Ann. Math. 54 325-338
[9]  
Gardener T(1941)-algebras Ann. Math. 42 994-1024
[10]  
Jana NK(2014)Order properties of self-adjoint operators Positivity 18 223-234