The involvement of bioactive factors in the self-renewal and stemness maintenance of spermatogonial stem cells

被引:0
|
作者
Guoqing Yang
Yuqing He
Hao Yang
机构
[1] The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine,Department of Anesthesiology
[2] Ningxia Medical University,School of Basic Medicine
[3] Xi’an Jiaotong University,Translational Medicine Center, Hong Hui Hospital
来源
Molecular and Cellular Biochemistry | 2021年 / 476卷
关键词
Spermatogonial stem cells; Self-renewal; Stemness maintenance; Bioactive factors;
D O I
暂无
中图分类号
学科分类号
摘要
Spermatogenesis is usually accompanied throughout mammalian lifetime, transmitting genetic information to the next generation, which is mainly dependent on the self-renewal and differentiation of spermatogonial stem cells (SSCs). With further investigation on profiles of SSCs, the previous prevailing orthodoxy that SSCs are unipotent stem cells to differentiate into spermatids only, has been challenged. More notably, accumulating evidence has demonstrated that SSCs are capable of giving rise to cell lineages of the three germ layers, highlighting potential important applications of SSCs for regenerative medicine. Nevertheless, it is unknown how the proliferation and stemness maintenance of SSCs are regulated intrinsically and strictly controlled in a special niche microenvironment in the seminiferous tubules. Based on the special niche microenvironment for SSCs, it is of vital interest to summarize the recent knowledge regarding several critical bioactive molecules in the self-renewal and stemness maintenance of SSCs. In this review, we discuss most recent findings about these critical bioactive factors and further address the new advances on the self-renewal and stemness maintenance of SSCs.
引用
收藏
页码:1813 / 1823
页数:10
相关论文
共 50 条
  • [31] Autophagy and Stem Cells: Self-Eating for Self-Renewal
    Chang, Natasha C.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [32] Mechanisms of self-renewal in human embryonic stem cells
    Stewart, Rebecca
    Stojkovic, Miodrag
    Lako, Majlinda
    EUROPEAN JOURNAL OF CANCER, 2006, 42 (09) : 1257 - 1272
  • [33] Regulation of self-renewal in normal and cancer stem cells
    Falzacappa, Maria V. Verga
    Ronchini, Chiara
    Reavie, Linsey B.
    Pelicci, Pier G.
    FEBS JOURNAL, 2012, 279 (19) : 3559 - 3572
  • [34] In vitro self-renewal division of hematopoietic stem cells
    Ema, H
    Takano, H
    Sudo, K
    Nakauchi, H
    JOURNAL OF EXPERIMENTAL MEDICINE, 2000, 192 (09) : 1281 - 1288
  • [35] A matter of life and death: self-renewal in stem cells
    Fuchs, Elaine
    Chen, Ting
    EMBO REPORTS, 2013, 14 (01) : 39 - 48
  • [36] Epigenetic modifications and self-renewal regulation of mouse germline stem cells
    Jiyoung Lee
    Takashi Shinohara
    Cell Research, 2011, 21 : 1164 - 1171
  • [37] Promotion of self-renewal of embryonic stem cells by midkine
    Xing Yao
    Zhou Tan
    Bin Gu
    Rong-rong Wu
    Yu-kan Liu
    Li-cheng Dai
    Ming Zhang
    Acta Pharmacologica Sinica, 2010, 31 : 629 - 637
  • [38] Self-renewal and solid-tumor stem cells
    Clarke, MF
    BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, 2005, 11 (02) : 14 - 16
  • [39] CHAC2 is essential for self-renewal and glutathione maintenance in human embryonic stem cells
    Wang, Cheng-Kai
    Yang, Shang-Chih
    Hsu, Shu-Ching
    Chang, Fang-Pei
    Lin, Yu-Tsen
    Chen, Shang-Fu
    Cheng, Chin-Lun
    Hsiao, Michael
    Lu, Frank Leigh
    Lu, Jean
    FREE RADICAL BIOLOGY AND MEDICINE, 2017, 113 : 439 - 451
  • [40] Self-renewal mechanisms in neural cancer stem cells
    Mantamadiotis, Theo
    Taraviras, Stavros
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2011, 16 : 598 - 607