Deformed σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-models, Ricci flow and Toda field theories

被引:0
|
作者
Dmitri Bykov
Dieter Lüst
机构
[1] Max-Planck-Institut für Physik,
[2] Arnold Sommerfeld Center for Theoretical Physics,undefined
[3] Steklov Mathematical Institute of Russ. Acad. Sci.,undefined
关键词
Sigma model; Integrable model; -deformation; Ricci flow; Pohlmeyer reduction; 37K10; 53E30; 53C43;
D O I
10.1007/s11005-021-01484-0
中图分类号
学科分类号
摘要
It is shown that the Pohlmeyer map of a σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-model with a toric two-dimensional target space naturally leads to the ‘sausage’ metric. We then elaborate the trigonometric deformation of the CPn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {CP}^{n-1}$$\end{document}-model, proving that its T-dual metric is Kähler and solves the Ricci flow equation. Finally, we discuss a relation between flag manifold σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-models and Toda field theories.
引用
收藏
相关论文
共 36 条