Band alignment of type-I SnS2/Bi2Se3 and type-II SnS2/Bi2Te3 van der Waals heterostructures for highly enhanced photoelectric responses构建I型SnS2/Bi2Se3和II型SnS2/Bi2Te3范德瓦尔斯异质结构提升其光电性能

被引:0
作者
Mingwei Luo
Chunhui Lu
Yuqi Liu
Taotao Han
Yanqing Ge
Yixuan Zhou
Xinlong Xu
机构
[1] Northwest University,Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon
来源
Science China Materials | 2022年 / 65卷
关键词
SnS; /Bi; Se; SnS; /Bi; Te; type-I heterostructure; type-II heterostructure; photoelectric response; photodetector;
D O I
暂无
中图分类号
学科分类号
摘要
Heterostructures based on new advanced materials offer a cornerstone for future optoelectronic devices with improved photoelectric performance. Band alignment is crucial for understanding the mechanism of charge carrier transportation and interface dynamics in heterostructures. Herein, we grew SnS2/Bi2X3 (X = Se, Te) van der Waals heterostructures by combining physical vapor deposition with chemical vapor deposition. The band alignment, measured by high-resolution X-ray photoelectron spectroscopy, suggested the successful design of type-I SnS2/Bi2Se3 and type-II SnS2/Bi2Te3 heterostructures. The SnS2/Bi2X3 heterostructure greatly improved the photoelectric response of a photoelectrochemical-type photodetector. The photocurrent densities in the type-I SnS2/Bi2Se3 and type-II SnS2/Bi2Te3 heterostructure-based devices were more than one order of magnitude higher than those of SnS2, Bi2Se3, and Bi2Te3. The improved photoelectric properties of the SnS2/Bi2X3 heterostructures can be explained as follows: (i) the photoexcited electrons and holes are effectively separated in the heterostructures; (ii) the charge-transfer efficiency and carrier density at the interface between the SnS2/Bi2X3 heterostructures and the electrolyte are greatly improved; (iii) the formed heterostructures expand the light absorption range. The photoelectric performance was further enhanced by efficient light trapping in the upright SnS2. The photoelectric response is higher in the type-I SnS2/Bi2Se3 heterostructure than in the type-II SnS2/Bi2Te3 heterostructure due to more efficient charge transportation at the type-I SnS2/Bi2Se3 heterostructure/electrolyte interface. These results suggest that suitable type-I and type-II heterostructures can be developed for high-performance photodetectors and other optoelectronic devices.
引用
收藏
页码:1000 / 1011
页数:11
相关论文
共 164 条
[31]  
Jaramillo R(2021)Te Adv Electron Mater 7 2001174-6926
[32]  
Hartman K(2014)/WS Adv Funct Mater 24 2421-2151
[33]  
Chaki SH(2017) heterostructures with strong interlayer coupling Small 13 1701478-4660
[34]  
Deshpande MP(2014)Observation of magnetoplasmons in Bi Adv Mater 26 4920-5921
[35]  
Trivedi DP(2017)Se Nano Lett 17 638-19
[36]  
Burton LA(2018) topological insulator Ceramics Int 44 21153-15723
[37]  
Whittles TJ(2016)Highly sensitive photoelectrochemical biosensor based on quantum dots sensitizing Bi J Phys Chem C 120 13199-33291
[38]  
Hesp D(2017)Te ACS Appl Mater Interfaces 9 9110-29301
[39]  
Splendiani A(2016) nanosheets and DNA-amplifying strategies Appl Phys Lett 109 032104-856
[40]  
Sun L(2015)Three-dimensional topological insulator Bi Appl Phys Lett 106 143105-undefined