Remarks on the r and Δ convolutions

被引:0
作者
Marek Bożejko
Anna Dorota Krystek
Łukasz Jan Wojakowski
机构
[1] University of Wrocław,Mathematical Institute
来源
Mathematische Zeitschrift | 2006年 / 253卷
关键词
Convolution; conditionally free; free and boolean convolution; deformations; moment–cumulant formulae; limit theorems; operator spaces; Primary: 46L53; 46L54; Secondary: 60E10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the properties of the r–deformation introduced in [B1]. We observe that the associated convolution coming from the conditionally free convolution is associative only for r = 1 and r = 0. We give the realization of some r–Gaussian random variables and obtain Haagerup–Pisier–Buchholz type inequalities. We also study another convolution defined with the use of the r–deformation through a moment–cumulant formula [KY1] and show that it is associative and in general not positive.
引用
收藏
页码:177 / 196
页数:19
相关论文
共 50 条
  • [31] On the preservation of stability under convolutions
    Chae, GJ
    Kim, HO
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 19 (1-3) : 183 - 193
  • [32] Asymptotic behavior of generalized convolutions
    Li, D.
    Sinai, Ya. G.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (02) : 248 - 262
  • [33] Tensor convolutions and Hankel tensors
    Xu, Changqing
    Xu, Yiran
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (06) : 1357 - 1373
  • [34] Boolean convolutions and regular variation
    Chakraborty, Sukrit
    Hazra, Rajat Subhra
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (02): : 961 - 991
  • [35] Weighted inequalities for iterated convolutions
    Andersen, KF
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (09) : 2643 - 2651
  • [36] KAConv: Kernel attention convolutions
    Shan, Xinxin
    Ma, Tai
    Shen, Yutao
    Li, Jiafeng
    Wen, Ying
    Neurocomputing, 2022, 514 : 477 - 485
  • [37] ON CONVOLUTIONS OF B-SPLINES
    STROM, K
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 55 (01) : 1 - 29
  • [38] Tensor convolutions and Hankel tensors
    Changqing Xu
    Yiran Xu
    Frontiers of Mathematics in China, 2017, 12 : 1357 - 1373
  • [39] NEW CONVOLUTIONS AND NORM INEQUALITIES
    Castro, L. P.
    Saitoh, S.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 707 - 716
  • [40] Multithreaded implicitly dealiased convolutions
    Roberts, Malcolm
    Bowman, John C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 356 : 98 - 114