On the Internal and Boundary Stabilization of Timoshenko Beams

被引:0
|
作者
Salim A. Messaoudi
Muhammad I. Mustafa
机构
[1] KFUPM,Department of Mathematics and Statistics
[2] King Fahd University of Petroleum and Minerals,Department of Mathematics and Statistics
来源
Nonlinear Differential Equations and Applications NoDEA | 2008年 / 15卷
关键词
35B37; 35L55; 74D05; 93D15; 93D20; Energy decay; nonlinear damping; Timoshenko;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider Timoshenko systems with either internal or boundary feedbacks. We establish explicit and generalized decay results, without imposing restrictive growth assumption near the origin on the damping terms.
引用
收藏
页码:655 / 671
页数:16
相关论文
共 50 条
  • [41] Decay of the timoshenko beam with thermal effect and memory boundary conditions
    Aouadi, M.
    Soufyane, A.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2013, 19 (01) : 33 - 46
  • [42] Memory-type boundary control of a laminated Timoshenko beam
    Feng, Baowei
    Soufyane, Abdelaziz
    MATHEMATICS AND MECHANICS OF SOLIDS, 2020, 25 (08) : 1568 - 1588
  • [43] Geometrically constrained stabilization of wave equations with Wentzell boundary conditions
    Cavalcanti, Marcelo M.
    Lasiecka, Irena
    Toundykov, Daniel
    APPLICABLE ANALYSIS, 2012, 91 (08) : 1427 - 1452
  • [44] Exponential stabilization of laminated beams with history memories
    Feng, B.
    Almeida Junior, D. S.
    Ramos, A. J. A.
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (03) : 559 - 579
  • [45] Invariance of decay rate with respect to boundary conditions in thermoelastic Timoshenko systems
    Alves, M. S.
    Jorge Silva, M. A.
    Ma, T. F.
    Munoz Rivera, J. E.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [46] Stabilization of a type III thermoelastic Timoshenko system in the presence of a time-distributed delay
    Fareh, Abdelfeteh
    Messaoudi, Salim A.
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (07) : 1017 - 1032
  • [47] Well-posedness and stability result for carbon nanotubes Timoshenko beams with second sound
    Apalara, Tijani A.
    Mpungu, Kassimu
    APPLICABLE ANALYSIS, 2024,
  • [48] FREQUENCY DOMAIN APPROACH FOR THE STABILIZATION OF TIMOSHENKO-TYPE SYSTEM OF THERMOELASTICITY OF TYPE III
    Soufyane, Abdelaziz
    Afilal, Mounir
    DYNAMIC SYSTEMS AND APPLICATIONS, 2014, 23 (01): : 15 - 30
  • [49] Well-posedness of Mindlin–Timoshenko Plate with Nonlinear Boundary Damping and Sources
    Pei Pei
    Mohammad A. Rammaha
    Daniel Toundykov
    Applied Mathematics & Optimization, 2017, 76 : 429 - 464
  • [50] A stability result of a Timoshenko beam system with a delay term in the internal fractional feedback
    Aounallah, Radhouane
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (02)