The Schwarz-Pick lemma and Julia lemma for real planar harmonic mappings

被引:0
作者
HuaiHui Chen
机构
[1] Nanjing Normal University,Department of Mathematics
来源
Science China Mathematics | 2013年 / 56卷
关键词
harmonic mappings; Schwarz-Pick lemma; Julia lemma; 30C99; 30C62;
D O I
暂无
中图分类号
学科分类号
摘要
The classical Schwarz-Pick lemma and Julia lemma for holomorphic mappings on the unit disk D are generalized to real harmonic mappings of the unit disk, and the results are precise. It is proved that for a harmonic mapping U of D into the open interval I = (−1, 1), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{{\Lambda _U (z)}} {{\cos \tfrac{{U(z)\pi }} {2}}} \leqslant \frac{4} {\pi }\frac{1} {{1 - \left| z \right|^2 }}$$\end{document} holds for z ∈ D, where ΛU(z) is the maximum dilation of U at z. The inequality is sharp for any z ∈ D and any value of U(z), and the equality occurs for some point in D if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(z) = \tfrac{4} {\pi }\operatorname{Re} \{ \arctan \phi (z)\}$$\end{document}, z ∈ D, with a Möbius transformation φ of D onto itself.
引用
收藏
页码:2327 / 2334
页数:7
相关论文
共 12 条
[1]  
Bshouty D(1994)Univalent harmonic mappings in the plane Ann Univ Mariae Curie-Sklodowska Sect A 48 12-42
[2]  
Hengartner W(1959)On one-to-one harmonic mappings Pacific J Math 9 101-105
[3]  
Heinz E(1989)The Bloch constant of bounded harmonic mappings Indiana Univ Math J 38 829-840
[4]  
Colonna F(2007)On the quasi-isometries of harmonic quasiconformal mappings J Math Anal Appl 334 404-413
[5]  
Knežević M(2011)A Schwarz lemma for the modulus of a vector-valued analytic function Proc Amer Math Soc 189 969-973
[6]  
Mateljević M(2011)The Schwarz-Pick lemma for planar harmonic mappings Sci China Math 54 1101-1106
[7]  
Pavlović M(2012)On harmonic functions and the Schwarz lemma Proc Amer Math Soc 140 161-165
[8]  
Chen H(1915)Über eine Eigenschaft der konformen Abbildung kreisförmiger Bereiche Math Ann 77 1-6
[9]  
Kalaj D(1915)Über die beschränkungen analytischer Funktionen, welche durch vorgeschriebene Werte bewirkt werden Math Ann 77 7-23
[10]  
Vuorinen M(undefined)undefined undefined undefined undefined-undefined