Existence Results for the Flow of Viscoelastic Fluids with an Integral Constitutive Law

被引:0
作者
Laurent Chupin
机构
[1] Université Blaise Pascal,Laboratoire de Mathématiques, UMR CNRS 6620
[2] Campus des Cézeaux,undefined
来源
Journal of Mathematical Fluid Mechanics | 2013年 / 15卷
关键词
Integral Model; Global Existence; Memory Function; Deformation Gradient; Viscoelastic Fluid;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the flows of viscoelastic fluid which obey a constitutive law of integral type. Some theoretical results are proved: local existence, global existence with small data and uniqueness results for the initial boundary value problem.
引用
收藏
页码:783 / 806
页数:23
相关论文
共 65 条
[1]  
Aarts A.C.T.(1995)Transient behaviour and stability points of the Poiseuille flow of a KBKZ-fluid J. Eng. Math. 29 371-392
[2]  
van de Ven A.A.F.(2007)Viscoelastic fluids in a thin domain Q. Appl. Math. 65 625-651
[3]  
Bayada G.(2009)Viscoelastic fluids in thin domains: a mathematical proof Asymptot. Anal. 64 185-211
[4]  
Chupin L.(1959)A study of stress relaxation with finite strain Trans. Soc. Rheol. 12 623-727
[5]  
Martin S.(1964)A study of stress relaxation with finite strain Trans. Soc. Rheol. 17 35-92
[6]  
Bayada G.(1987)Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stochiometry J. Rheol. 31 683-112
[7]  
Chupin L.(2001)About lifespan of regular solutions of equations related to viscoelastic fluids SIAM J. Math. Anal. 33 84-1078
[8]  
Grec B.(2004)Some theoretical results concerning diphasic viscoelastic flows of the Oldroyd kind Adv. Differ. Equ. 9 1039-31
[9]  
Bernstein B.(1968)On the general theory of fading memory Arch. Ration Mech. Anal. 29 18-68
[10]  
Kearsley E.A.(1982)Constitutive equations for polymer melts predicted by the doi-edwards and curtiss-bird kinetic theory models J. Nonnewton. Fluid Mech. 11 53-29