Decomposition method for solving nonlinear integro-differential equations

被引:17
作者
Al-Khaled K. [1 ]
Allan F. [1 ]
机构
[1] Department of Mathematics, Faculty of Science, United Arab Emirates University, Al-Ain
关键词
Decomposition method; Integral equations (numerical methods); Integro-differential equations; Nonlinear Volterra-Fredholm equations;
D O I
10.1007/BF02935815
中图分类号
学科分类号
摘要
This paper outlines a reliable strategy for solving nonlinear Volterra-Fredholm integro-differential equations. The modified form of Adomian decomposition method is found to be fast and accurate. Numerical examples are presented to illustrate the accuracy of the method. © 2005 Korean Society for Computational & Applied Mathematics and Korean SIGCAM.
引用
收藏
页码:415 / 425
页数:10
相关论文
共 20 条
[1]  
Abdou M. A.(2003)On the numerical solutions of Fredholm-Volterra integral equation Appl. Math. Comput. 146 713-728
[2]  
Mohamed Khamis I.(1988)A Review of the Decomposition Method in Applied Mathematics J. Math. Anal. Appl. 135 501-544
[3]  
Ismail A. S.(1999)The numerical analysis of Adomian decomposition method for some nonlinear turbulent diffusion problems Nonlinear Stud. 6 85-89
[4]  
Adomian G.(2003)Application of Adomian's approximation to blood flow through arteries in the presence of a magnetic field J. Appl. Math. & Computing 12 267-279
[5]  
Hadizadeh M.(1997)Multigrid method for nonlinear integral equations J. Appl. Math. & Computing(old:KJCAM) 4 427-440
[6]  
Maleknejad K.(2002)A matrix formulation of the Tau method for Fredholm and Volterra linear integro-differential equations J. Appl. Math. & Computing(old:KJCAM) 9 497-507
[7]  
Haldar K.(2003)Taylor polynomial solution of high-order nonlinear Volterra Fredholm integro-differential equations Appl. Math. Comput. 145 641-653
[8]  
Lee Hosae(1997)Spline collocation methods for Fredholm-Volterra integro-differential equations of high order Vietnam J. Math. 25 15-24
[9]  
Hosseini AliAbadi M.(2000)The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials Appl. Math. Comput. 112 291-308
[10]  
Shahmorad S.(2002)A reliable treatment for mixed Volterra-Fredholm integral equations Appl. Math. Comput. 127 405-414