Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions

被引:129
作者
Baccarini, Andrea [1 ]
Karlsson, Linn [2 ,3 ]
Dommen, Josef [1 ]
Duplessis, Patrick [4 ]
Vullers, Jutta [5 ]
Brooks, Ian M. [5 ]
Saiz-Lopez, Alfonso [6 ]
Salter, Matthew [2 ,3 ]
Tjernstrom, Michael [3 ,7 ]
Baltensperger, Urs [1 ]
Zieger, Paul [2 ,3 ]
Schmale, Julia [1 ,8 ]
机构
[1] Paul Scherrer Inst, Lab Atmospher Chem, Villigen, Switzerland
[2] Stockholm Univ, Dept Environm Sci, Stockholm, Sweden
[3] Stockholm Univ, Bolin Ctr Climate Res, Stockholm, Sweden
[4] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada
[5] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England
[6] CSIC, Inst Phys Chem Rocasolano, Dept Atmospher Chem & Climate, Madrid, Spain
[7] Stockholm Univ, Dept Meteorol, Stockholm, Sweden
[8] Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn, Lausanne, Switzerland
基金
瑞士国家科学基金会; 瑞典研究理事会; 美国国家科学基金会; 欧洲研究理事会; 英国自然环境研究理事会;
关键词
NUMBER-SIZE DISTRIBUTIONS; MARINE BOUNDARY-LAYER; SULFURIC-ACID; MASS-SPECTROMETER; MOLECULAR-IODINE; AEROSOL; SUMMER; CLOUD; NM; CLIMATE;
D O I
10.1038/s41467-020-18551-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the central Arctic Ocean the formation of clouds and their properties are sensitive to the availability of cloud condensation nuclei (CCN). The vapors responsible for new particle formation (NPF), potentially leading to CCN, have remained unidentified since the first aerosol measurements in 1991. Here, we report that all the observed NPF events from the Arctic Ocean 2018 expedition are driven by iodic acid with little contribution from sulfuric acid. Iodic acid largely explains the growth of ultrafine particles (UFP) in most events. The iodic acid concentration increases significantly from summer towards autumn, possibly linked to the ocean freeze-up and a seasonal rise in ozone. This leads to a one order of magnitude higher UFP concentration in autumn. Measurements of cloud residuals suggest that particles smaller than 30nm in diameter can activate as CCN. Therefore, iodine NPF has the potential to influence cloud properties over the Arctic Ocean. Which vapors are responsible for new particle formation in the Arctic is largely unknown. Here, the authors show that the formation of new particles at the central Arctic Ocean is mainly driven by iodic acid and that particles smaller than 30nm in diameter can activate as cloud condensation nuclei.
引用
收藏
页数:11
相关论文
共 91 条
  • [91] **DATA OBJECT**, DOI DOI 10.17043/AO2018-MISU-WEATHER-2