Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions

被引:129
作者
Baccarini, Andrea [1 ]
Karlsson, Linn [2 ,3 ]
Dommen, Josef [1 ]
Duplessis, Patrick [4 ]
Vullers, Jutta [5 ]
Brooks, Ian M. [5 ]
Saiz-Lopez, Alfonso [6 ]
Salter, Matthew [2 ,3 ]
Tjernstrom, Michael [3 ,7 ]
Baltensperger, Urs [1 ]
Zieger, Paul [2 ,3 ]
Schmale, Julia [1 ,8 ]
机构
[1] Paul Scherrer Inst, Lab Atmospher Chem, Villigen, Switzerland
[2] Stockholm Univ, Dept Environm Sci, Stockholm, Sweden
[3] Stockholm Univ, Bolin Ctr Climate Res, Stockholm, Sweden
[4] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada
[5] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England
[6] CSIC, Inst Phys Chem Rocasolano, Dept Atmospher Chem & Climate, Madrid, Spain
[7] Stockholm Univ, Dept Meteorol, Stockholm, Sweden
[8] Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn, Lausanne, Switzerland
基金
瑞士国家科学基金会; 瑞典研究理事会; 美国国家科学基金会; 欧洲研究理事会; 英国自然环境研究理事会;
关键词
NUMBER-SIZE DISTRIBUTIONS; MARINE BOUNDARY-LAYER; SULFURIC-ACID; MASS-SPECTROMETER; MOLECULAR-IODINE; AEROSOL; SUMMER; CLOUD; NM; CLIMATE;
D O I
10.1038/s41467-020-18551-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the central Arctic Ocean the formation of clouds and their properties are sensitive to the availability of cloud condensation nuclei (CCN). The vapors responsible for new particle formation (NPF), potentially leading to CCN, have remained unidentified since the first aerosol measurements in 1991. Here, we report that all the observed NPF events from the Arctic Ocean 2018 expedition are driven by iodic acid with little contribution from sulfuric acid. Iodic acid largely explains the growth of ultrafine particles (UFP) in most events. The iodic acid concentration increases significantly from summer towards autumn, possibly linked to the ocean freeze-up and a seasonal rise in ozone. This leads to a one order of magnitude higher UFP concentration in autumn. Measurements of cloud residuals suggest that particles smaller than 30nm in diameter can activate as CCN. Therefore, iodine NPF has the potential to influence cloud properties over the Arctic Ocean. Which vapors are responsible for new particle formation in the Arctic is largely unknown. Here, the authors show that the formation of new particles at the central Arctic Ocean is mainly driven by iodic acid and that particles smaller than 30nm in diameter can activate as cloud condensation nuclei.
引用
收藏
页数:11
相关论文
共 91 条
  • [1] Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions
    Abbatt, J. P. D.
    Thomas, J. L.
    Abrahamsson, K.
    Boxe, C.
    Granfors, A.
    Jones, A. E.
    King, M. D.
    Saiz-Lopez, A.
    Shepson, P. B.
    Sodeau, J.
    Toohey, D. W.
    Toubin, C.
    von Glasow, R.
    Wren, S. N.
    Yang, X.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (14) : 6237 - 6271
  • [2] Overview paper: New insights into aerosol and climate in the Arctic
    Abbatt, Jonathan P. D.
    Leaitch, W. Richard
    Aliabadi, Amir A.
    Bertram, Allan K.
    Blanchet, Jean-Pierre
    Boivin-Rioux, Aude
    Bozem, Heiko
    Burkart, Julia
    Chang, Rachel Y. W.
    Charette, Joannie
    Chaubey, Jai P.
    Christensen, Robert J.
    Cirisan, Ana
    Collins, Douglas B.
    Croft, Betty
    Dionne, Joelle
    Evans, Greg J.
    Fletcher, Christopher G.
    Gali, Marti
    Ghahreman, Roya
    Girard, Eric
    Gong, Wanmin
    Gosselin, Michel
    Gourdal, Margaux
    Hanna, Sarah J.
    Hayashida, Hakase
    Herber, Andreas B.
    Hesaraki, Sareh
    Hoor, Peter
    Huang, Lin
    Hussherr, Rachel
    Irish, Victoria E.
    Keita, Setigui A.
    Kodros, John K.
    Koellner, Franziska
    Kolonjari, Felicia
    Kunkel, Daniel
    Ladino, Luis A.
    Law, Kathy
    Levasseur, Maurice
    Libois, Quentin
    Liggio, John
    Lizotte, Martine
    Macdonald, Katrina M.
    Mahmood, Rashed
    Martin, Randall V.
    Mason, Ryan H.
    Miller, Lisa A.
    Moravek, Alexander
    Mortenson, Eric
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (04) : 2527 - 2560
  • [3] Ion Mobility-Mass Spectrometry of Iodine Pentoxide-Iodic Acid Hybrid Cluster Anions in Dry and Humidified Atmospheres
    Ahonen, Lauri
    Li, Chenxi
    Kubecka, Jakub
    Iyer, Siddharth
    Vehkamaki, Hanna
    Petaja, Tuukka
    Kulmala, Markku
    Hogan, Christopher. J., Jr.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (08) : 1935 - 1941
  • [4] Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA
    Allan, J. D.
    Williams, P. I.
    Najera, J.
    Whitehead, J. D.
    Flynn, M. J.
    Taylor, J. W.
    Liu, D.
    Darbyshire, E.
    Carpenter, L. J.
    Chance, R.
    Andrews, S. J.
    Hackenberg, S. C.
    McFiggans, G.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (10) : 5599 - 5609
  • [5] Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere
    Almeida, Joao
    Schobesberger, Siegfried
    Kuerten, Andreas
    Ortega, Ismael K.
    Kupiainen-Maatta, Oona
    Praplan, Arnaud P.
    Adamov, Alexey
    Amorim, Antonio
    Bianchi, Federico
    Breitenlechner, Martin
    David, Andre
    Dommen, Josef
    Donahue, Neil M.
    Downard, Andrew
    Dunne, Eimear
    Duplissy, Jonathan
    Ehrhart, Sebastian
    Flagan, Richard C.
    Franchin, Alessandro
    Guida, Roberto
    Hakala, Jani
    Hansel, Armin
    Heinritzi, Martin
    Henschel, Henning
    Jokinen, Tuija
    Junninen, Heikki
    Kajos, Maija
    Kangasluoma, Juha
    Keskinen, Helmi
    Kupc, Agnieszka
    Kurten, Theo
    Kvashin, Alexander N.
    Laaksonen, Ari
    Lehtipalo, Katrianne
    Leiminger, Markus
    Leppa, Johannes
    Loukonen, Ville
    Makhmutov, Vladimir
    Mathot, Serge
    McGrath, Matthew J.
    Nieminen, Tuomo
    Olenius, Tinja
    Onnela, Antti
    Petaja, Tuukka
    Riccobono, Francesco
    Riipinen, Ilona
    Rissanen, Matti
    Rondo, Linda
    Ruuskanen, Taina
    Santos, Filipe D.
    [J]. NATURE, 2013, 502 (7471) : 359 - +
  • [6] Baccarini A., 2020, CONCENTRATION PARTIC, DOI [10.17043/ao2018-aerosol-ucpc, DOI 10.17043/AO2018-AEROSOL-UCPC]
  • [7] Baccarini A., 2021, DOI [10.17043/ao2018-aerosol-merged-psd, DOI 10.17043/AO2018-AEROSOL-MERGED-PSD]
  • [8] Baccarini A., 2020, DOI [10.17043/ao2018-aerosol-cims, DOI 10.17043/AO2018-AEROSOL-CIMS]
  • [9] Baccarini A., 2020, SIZE DISTRIBUTION NE, DOI [10.17043/ao2018-aerosol-nais, DOI 10.17043/AO2018-AEROSOL-NAIS]
  • [10] Baccarini A., 2020, OZONE CONCENTRATION, DOI [10.17043/ao2018-aerosol-ozone, DOI 10.17043/AO2018-AEROSOL-OZONE]