Regularity for quasilinear equations on degenerate singular sets

被引:0
作者
Eduardo V. Teixeira
机构
[1] Universidade Federal do Ceará,Departamento de Matemática
来源
Mathematische Annalen | 2014年 / 358卷
关键词
35J70; 35J75; 35J62; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a new universal gradient continuity estimate for solutions to quasilinear equations with varying coefficients at singular set of degeneracy S(u):={X:Du(X)=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{S}(u) := \{X : D u(X) = 0 \}$$\end{document}. Our main Theorem reveals that along S(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{S}(u)$$\end{document}, u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} is asymptotically as regular as solutions to constant coefficient equations. In particular, along the critical set S(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{S}(u)$$\end{document}, Du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Du$$\end{document} enjoys a modulus of continuity much superior than the, possibly low, continuity feature of the coefficients. The results are new even in the context of linear elliptic equations, where it is herein shown that H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-weak solutions to divaij(X)Du=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {div}\left( a_{ij}(X)Du \right) = 0$$\end{document}, with aij\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{ij}$$\end{document} elliptic and Dini-continuous are actually C1,1-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,1^{-}}$$\end{document} along S(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{S}(u)$$\end{document}. The results and insights of this work foster a new understanding on smoothness properties of solutions to degenerate or singular equations, beyond typical elliptic regularity estimates, precisely where the diffusion attributes of the equation collapse.
引用
收藏
页码:241 / 256
页数:15
相关论文
共 22 条
[1]  
DiBenedetto E(1983) local regularity of weak solutions of degenerate elliptic equations Nonlinear Anal. TMA. 7 827-850
[2]  
Caffarelli L.A.(1989)Interior a priori estimates for solutions of fully nonlinear equations Ann. Math. (2). 130 189-213
[3]  
Duzaar F.(2010)Gradient continuity estimates Calc. Var. Partial Differ. Eq. 39 379-418
[4]  
Mingione G.(2011)Gradient estimates via nonlinear potentials Am. J. Math. 133 1093-1149
[5]  
Duzaar F(1989)Regularity of p-harmonic functions on the plane Revista Matematica Iberoamericana. 5 119-161
[6]  
Mingione G(1994)The Wiener test and potential estimates for quasilinear elliptic equations Acta Math. 172 137-4269
[7]  
Iwaniec T(2012)Universal potential estimates J. Funct. Anal. 262 4205-858
[8]  
Manfredi JJ(1983)Regularity of the derivatives of solutions to certain elliptic equations Indiana Univ. Math. J. 32 849-778
[9]  
Kilpelaïnen T(2009)Pathological solutions to elliptic problems in divergence form with continuous coefficients Comptes Rendus Mathematique. 347 773-261
[10]  
Malý J(1988)Regularity for minima of functionals with p-growth J. Differ. Eq. 76 203212-627