Existence of Multiple Positive Solutions for Nonlinear Fractional Boundary Value Problems on the Half-Line

被引:0
作者
Faten Toumi
Zagharide Zine El Abidine
机构
[1] Campus Universitaire,Département de Mathématiques, Faculté des Sciences de Tunis
来源
Mediterranean Journal of Mathematics | 2016年 / 13卷
关键词
Fractional differential equation; positive solutions; Schäuder fixed point theorem; 26A33; 34B15; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with the following nonlinear fractional differential problem in the half-line R+=(0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{+}=(0,+ \infty)}$$\end{document}Dαu(x)+f(x,u(x),Dpu(x))=0,x∈R+,u(0)=u′0=⋯=um-2(0)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{l}D^{\alpha }u(x)+f(x,u(x),D^{p}u(x))=0,\quad x \in \mathbb{R}^{+},\\ u(0)=u^{\prime } \left( 0\right) = \cdots =u^{\left( m-2\right) }(0)=0,\end{array}\right.$$\end{document}where m∈N,m≥2,m-1<α≤m,0<p≤α-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m\in \mathbb{N}, m \geq 2, m-1 < \alpha \leq m, 0 < p \leq \alpha -1}$$\end{document}, the differential operator is taken in the Riemann–Liouville sense and f is a Borel measurable function in R+×R+×R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R} ^{+}}$$\end{document} satisfying certain conditions. More precisely, we show the existence of multiple unbounded positive solutions, by means of Schäuder fixed point theorem. Some examples illustrating our main result are also given.
引用
收藏
页码:2353 / 2364
页数:11
相关论文
共 51 条
[1]  
Abbas S.(2015)Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses Appl. Math. Comput. 257 190-198
[2]  
Benchohra M.(2015)New stability results for partial fractional differential inclusions with not instantaneous impulses Fract. Calc. Appl. Anal. 18 172-191
[3]  
Abbas S.(2010)Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations J. Math. Anal. Appl. 371 57-68
[4]  
Benchohra M.(2011)Boundary value problems for differential equations involving Riemann–Liouville fractional derivative on the half line Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal. 18 235-244
[5]  
Darwish M.A.(2004)The existence of a positive solutions for a singular coupled system of nonlinear fractional differential equations Appl. Math. Comput. 150 611-621
[6]  
Agarwal R.P.(2005)Positive solutions for boundary value problem of nonlinear fractional differential equation J. Math. Anal. Appl. 311 495-505
[7]  
O’Regan D.(1996)Existence and uniqueness for a nonlinear fractional differential equation J. Math. Anal. Appl. 204 609-625
[8]  
Staněk S.(2009)Positive solutions for boundary value problems of nonlinear fractional differential equation Nonlinear Anal. 71 5545-5550
[9]  
Agarwal R.P.(2011)Existence of multiple positive solutions for Math. Comput. Model. 54 1334-1346
[10]  
Benchohra M.(2011)-point fractional boundary value problems on an infinite interval Appl. Math. Lett. 25 1986-1992