Exceptional characters and prime numbers in short intervals

被引:0
|
作者
John B. Friedlander
Henryk Iwaniec
机构
[1] University of Toronto,Department of Mathematics
[2] Rutgers University,Department of Mathematics
关键词
M20; M55; N08; Primes; intervals; exceptional characters;
D O I
10.1007/s00029-004-0374-6
中图分类号
学科分类号
摘要
Under the assumption of the Riemann hypothesis the asymptotic value y/log x is known to hold for the number of primes in the short interval [x - y, x] for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y = x^\alpha $$ \end{document} for every fixed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\alpha < {1\over 2}$$ \end{document}. We show under the assumption of the existence of exceptional Dirichlet characters the same asymptotic formula holds in the shorter intervals, for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\alpha < {1\over 2}$$ \end{document} \, in wide ranges of x depending on the characters.
引用
收藏
相关论文
共 41 条
  • [21] Dirichlet L-functions of quadratic characters of prime conductor at the central point
    Baluyot, Siegfred
    Pratt, Kyle
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (02) : 369 - 460
  • [22] New estimates for exponential sums over multiplicative subgroups and intervals in prime fields
    Di Benedetto, Daniel
    Garaev, Moubariz Z.
    Garcia, Victor C.
    Gonzalez-Sanchez, Diego
    Shparlinski, Igor E.
    Trujillo, Carlos A.
    JOURNAL OF NUMBER THEORY, 2020, 215 : 261 - 274
  • [23] THE LIOUVILLE FUNCTION IN SHORT INTERVALS [after Matomaki and Radziwill]
    Soundararajan, Kannan
    ASTERISQUE, 2017, (390) : 453 - +
  • [24] SOME REMARKS ON THE RIEMANN ZETA FUNCTION AND PRIME FACTORS OF NUMERATORS OF BERNOULLI NUMBERS
    Luca, Florian
    Pizarro-Madariaga, Amalia
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (02) : 216 - 223
  • [25] Fourier uniformity of bounded multiplicative functions in short intervals on average
    Matomaki, Kaisa
    Radziwill, Maksym
    Tao, Terence
    INVENTIONES MATHEMATICAE, 2020, 220 (01) : 1 - 58
  • [26] On the Equation n =p +k2 in Short Intervals
    王天泽
    数学季刊, 1994, (04) : 5 - 7
  • [27] Higher uniformity of bounded multiplicative functions in short intervals on average
    Matomaeki, Kaisa
    Radziwill, Maksym
    Tao, Terence
    Teraevaeinen, Joni
    Ziegler, Tamar
    ANNALS OF MATHEMATICS, 2023, 197 (02) : 739 - 857
  • [28] ON THE STUDY OF THE POLYNOMIAL FUNCTION px2 + bx + c EXPRESSING PRIME NUMBERS
    Ramirez Vinas, Victor Julio
    MATHEMATICAL REPORTS, 2022, 24 (03): : 339 - 347
  • [29] On sums of Hecke eigenvalue squares over primes in very short intervals
    Kim, Jiseong
    ACTA ARITHMETICA, 2022, 205 (04) : 309 - 321
  • [30] Sums of singular series and primes in short intervals in algebraic number fields
    Kuperberg, Vivian
    Rodgers, Brad
    Roditty-Gershon, Edva
    RAMANUJAN JOURNAL, 2022, 58 (02) : 291 - 317