Amplifying circuit lower bounds against polynomial time, with applications

被引:0
作者
Richard J. Lipton
Ryan Williams
机构
[1] Georgia Institute of Technology,College of Computing
[2] Stanford University,Computer Science Department
来源
computational complexity | 2013年 / 22卷
关键词
Circuit evaluation; quantified Boolean formulas; lower bounds; NC; size–depth trade-offs; 68Q15; 68Q17;
D O I
暂无
中图分类号
学科分类号
摘要
We give a self-reduction for the Circuit Evaluation problem (CircEval) and prove the following consequences. Amplifying size–depth lower bounds. If CircEval has Boolean circuits of nk size and n1−δ depth for some k and δ, then for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon > 0}$$\end{document}, there is a δ′ > 0 such that CircEval has circuits of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n^{1 + \epsilon}}$$\end{document} size and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n^{1- \delta^{\prime}}}$$\end{document} depth. Moreover, the resulting circuits require only \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}(n^{\epsilon})}$$\end{document} bits of non-uniformity to construct. As a consequence, strong enough depth lower bounds for Circuit Evaluation imply a full separation of P and NC (even with a weak size lower bound).Lower bounds for quantified Boolean formulas. Let c, d > 1 and e < 1 satisfy c < (1 − e + d )/d. Either the problem of recognizing valid quantified Boolean formulas (QBF) is not solvable in TIME[nc], or the Circuit Evaluation problem cannot be solved with circuits of nd size and ne depth. This implies unconditional polynomial-time uniform circuit lower bounds for solving QBF. We also prove that QBF does not have nc-time uniform NC circuits, for all c < 2.
引用
收藏
页码:311 / 343
页数:32
相关论文
共 33 条
[1]  
Allender E.(1989)P-uniform circuit complexity J. ACM 36 912-928
[2]  
Borodin A.(1977)On Relating Time and Space to Size and Depth SIAM J. Computing 6 733-744
[3]  
Fortnow L.(2000)Time-Space Tradeoffs for Satisfiability J. Comput. Syst. Sci 60 337-353
[4]  
Fortnow L.(2005)Time-space lower bounds for satisfiability J. ACM 52 835-865
[5]  
Lipton R. J.(1993)Interactive proof systems and alternating time–space complexity Theoretical Computer Science 113 55-73
[6]  
Melkebeek D.(1966)Two-Tape Simulation of Multitape Turing Machines J. ACM 13 533-546
[7]  
Viglas A.(1977)On time versus space J. ACM 24 332-337
[8]  
Fortnow L.(2002)In search of an easy witness: Exponential time vs. probabilistic polynomial time JCSS 65 672-694
[9]  
Lund C.(2004)Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds Computational Complexity 13 1-46
[10]  
Hennie F.(1982)Circuit-Size Lower Bounds and Non-Reducibility to Sparse Sets Information and Control 55 40-56