Asymptotic behavior of solutions of equations of the Emden-Fowler type at infinity

被引:0
作者
M. D. Surnachev
机构
[1] Moscow State University,
来源
Differential Equations | 2009年 / 45卷
关键词
Asymptotic Behavior; Nonnegative Integer; Elliptic Operator; Angular Parameter; Asymptotic Term;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain an asymptotic representation of solutions of equations of the Emden-Fowler type with “supercritical” exponent and prove the existence of solutions with a given asymptotics. The methods used include the construction of supersolutions for deriving a priori estimates and the use of Kondrat’ev’s results for weighted spaces. The existence of solutions is proved by the Leray-Schauder method.
引用
收藏
页码:1174 / 1188
页数:14
相关论文
共 7 条
[1]  
Agranovich M.S.(1964)Elliptic Problems with Parameter and Parabolic Problems of the General Form Uspekhi Mat. Nauk 19 53-161
[2]  
Vishik M.I.(1988)Qualitative Theory of Second-Order Linear Partial Differential Equations Mat. Sb. 135177 346-360
[3]  
Kondrat’ev V.A.(1983)Boundary Value Problems for Partial Differential Equations in Nonsmooth Domains Uspekhi Mat. Nauk 38 3-76
[4]  
Landis E.M.(1967)Boundary Value Problems for Elliptic Equations in Domains with Conical or Angular Points Tr. Mosk. Mat. Obs. 16 209-292
[5]  
Kondrat’ev V.A.(undefined)undefined undefined undefined undefined-undefined
[6]  
Oleinik O.A.(undefined)undefined undefined undefined undefined-undefined
[7]  
Kondrat’ev V.A.(undefined)undefined undefined undefined undefined-undefined