A posteriori error bounds for fully-discrete hp-discontinuous Galerkin timestepping methods for parabolic problems

被引:0
作者
Emmanuil H. Georgoulis
Omar Lakkis
Thomas P. Wihler
机构
[1] University of Leicester,Department of Mathematics
[2] National Technical University of Athens,Department of Mathematics, School of Applied Mathematical and Physical Sciences
[3] University of Sussex,Department of Mathematics
[4] Universität Bern,Mathematisches Institut
来源
Numerische Mathematik | 2021年 / 148卷
关键词
65M60; 65M15; 65M50;
D O I
暂无
中图分类号
学科分类号
摘要
We consider fully discrete time-space approximations of abstract linear parabolic partial differential equations (PDEs) consisting of an hp-version discontinuous Galerkin (DG) time stepping scheme in conjunction with standard (conforming) Galerkin discretizations in space. We derive abstract computable a posteriori error bounds resulting, for instance, in concrete bounds in [inline-graphic not available: see fulltext]- and [inline-graphic not available: see fulltext]-type norms when I is the temporal and [inline-graphic not available: see fulltext] the spatial domain for the PDE. We base our methodology for the analysis on a novel space-time reconstruction approach. Our approach is flexible as it works for any type of elliptic error estimator and leaves their choice to the user. It also exhibits mesh-change estimators in a clear and concise way. We also show how our approach allows the derivation of such bounds in the [inline-graphic not available: see fulltext] norm.
引用
收藏
页码:363 / 386
页数:23
相关论文
共 78 条
  • [1] Akrivis G(2006)A posteriori error estimates for the Crank–Nicolson method for parabolic equations Math. Comp. 75 511-531
  • [2] Makridakis C(2009)Equilibrated residual error estimates are p-robust Comput. Methods Appl. Mech. Eng. 198 1189-1197
  • [3] Nochetto RH(2014)Adaptive discontinuous Galerkin methods for nonstationary convection–diffusion problems IMA J. Numer. Anal. 34 1578-1597
  • [4] Braess D(2020)A posteriori error analysis for implicit-explicit J. Sci. Comput. 82 24-1396
  • [5] Pillwein V(1999)-discontinuous Galerkin timestepping methods for semilinear parabolic problems Math. Comput. 68 1379-77
  • [6] Schöberl J(1991)Explicit error bounds in a conforming finite element method SIAM J. Numer. Anal. 28 43-740
  • [7] Cangiani A(1995)Adaptive finite element methods for parabolic problems. I. A linear model problem SIAM J. Numer. Anal. 32 706-1749
  • [8] Georgoulis EH(1995)Adaptive finite element methods for parabolic problems. II. Optimal error estimates in SIAM J. Numer. Anal. 32 1729-1763
  • [9] Metcalfe S(1995)Adaptive finite element methods for parabolic problems. IV. Nonlinear problems SIAM J. Numer. Anal. 32 1750-1325
  • [10] Cangiani A(1998)Adaptive finite element methods for parabolic problems. V. Long-time integration SIAM J. Numer. Anal. 35 1315-643