Periodicity of certain generalized continued fractions

被引:0
|
作者
Steven H. Weintraub
机构
[1] Lehigh University,Department of Mathematics
来源
Monatshefte für Mathematik | 2019年 / 189卷
关键词
Continued fractions; Periodicity; Pell’s equation; 11A55;
D O I
暂无
中图分类号
学科分类号
摘要
We have previously considered continued fractions with “numerator” a positive integer N, which we refer to as cfN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {cf}}_N$$\end{document} expansions. In particular, let E be a positive integer that is not a perfect square. For N>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N > 1$$\end{document}, E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{E}$$\end{document} has infinitely many cfN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {cf}}_N$$\end{document} expansions. There is a natural notion of the “best” cfN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {cf}}_N$$\end{document} expansion of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{E}$$\end{document}. We have conjectured, based on extensive numerical evidence, that such a best expansion is not always periodic. From this evidence, it is difficult to predict for which N this expansion will be periodic. We show here that for any such E, there are infinitely many values of N for which this expansion is indeed periodic, more precisely, periodic of period 1 or 2, and we obtain formulas for a subset of these expansions in terms of solutions to Pell’s equation x2-Ey2=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^2 - Ey^2 = 1$$\end{document}.
引用
收藏
页码:765 / 770
页数:5
相关论文
共 50 条