Effect of Al on Expansion Behavior of Mg–Al Alloys During Solidification

被引:0
作者
Yi Meng
Jian Sun
Lei-Gang Cao
Yue Yang
Hai-Tao Zhang
Jian-Zhong Cui
机构
[1] North China University of Technology,School of Mechanical and Materials Engineering
[2] Northeastern University,Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education
来源
Acta Metallurgica Sinica (English Letters) | 2019年 / 32卷
关键词
Solidification; Mg alloys; Al content; Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
The cooling curves and the change of contraction/expansion during solidification and cooling were tested by using a self-made device which could achieve the one-dimensional contraction instead of three-dimensional contraction of the casting. Then, the effects of Al content (0, 1.1, 3, 5, 10, 12.9, 15, 17, 19, 22, 24 and 30 wt%) on the thermal contraction/expansion of the binary Mg–Al as-cast alloys during solidification were obtained. The results showed that expanding instead of contraction was present in Mg–Al alloys with the addition of 0–30 wt% Al during solidification. The values of expansion significantly increased at first and then decreased with the increase in Al content. And the maximum expansion ratio of 0.44% (maximum expansion value: 0.841 mm) was present in the Mg–15 wt% Al alloy. Contraction instead of expansion occurred once the temperature drops to the temperature corresponding to the expansion value in total, indicating the occurrence of a continuous expansion during the solidification process in mushy zone for the Mg alloys with Al addition of 5–30 wt%. The expansion value in total consisted of two parts: the expansions occurring in the liquid-phase zone and mushy zone. The expansion in liquid zone was present in every Mg–Al alloy, and it contributed to the most proportion of the total expansion value when the Al content in Mg–Al alloy was lower than 10 wt% or higher than 22 wt%. However, the total expansion value was mainly determined by the solidification behavior in mushy zone when the Al content was among 10–22 wt% in Mg–Al alloys.
引用
收藏
页码:559 / 565
页数:6
相关论文
共 73 条
  • [1] Cao G(2006)undefined Mater. Sci. Eng. A 417 230-undefined
  • [2] Kou S(2013)undefined Acta Mater. 61 4848-undefined
  • [3] Paliwal M(2006)undefined Chin. Foundary 3 270-undefined
  • [4] Jung IH(2002)undefined Mater. Lett. 53 35-undefined
  • [5] Zheng WC(2014)undefined Trans. Nonferr. Met. Soc. Chin. 24 922-undefined
  • [6] Li SS(2016)undefined J. Mater. Sci. Technol. 32 68-undefined
  • [7] Tang B(2014)undefined J. Alloys Compd. 584 56-undefined
  • [8] Zeng DB(1995)undefined Mater. Sci. Technol. 11 926-undefined
  • [9] Wang YS(2004)undefined Prog. Mater Sci. 49 629-undefined
  • [10] Sun BD(2010)undefined Mater. Sci. Eng. A 527 7074-undefined