The □b-Heat Equation on Quadric Manifolds

被引:0
|
作者
Albert Boggess
Andrew Raich
机构
[1] Texas A&M University,Department of Mathematics
[2] 1 University of Arkansas,Department of Mathematics
来源
关键词
Quadric manifold; Lie group; Heat kernel; Heat equation; Fundamental solution; Kohn Laplacian; Heisenberg group; 32W30; 33C45; 43A80; 35K08;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we give an explicit calculation of the partial Fourier transform of the fundamental solution to the □b-heat equation on quadric submanifolds M⊂ℂn×ℂm. As a consequence, we can also compute the heat kernel associated with the weighted \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\partial}$\end{document}-equation in ℂn when the weight is given by exp (−φ(z,z)⋅λ) where φ:ℂn×ℂn→ℂm is a quadratic, sesquilinear form and λ∈ℝm. Our method involves the representation theory of the Lie group M and the group Fourier transform.
引用
收藏
页码:256 / 275
页数:19
相关论文
共 50 条