In this article, we give an explicit calculation of the partial Fourier transform of the fundamental solution to the □b-heat equation on quadric submanifolds M⊂ℂn×ℂm. As a consequence, we can also compute the heat kernel associated with the weighted \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\overline{\partial}$\end{document}-equation in ℂn when the weight is given by exp (−φ(z,z)⋅λ) where φ:ℂn×ℂn→ℂm is a quadratic, sesquilinear form and λ∈ℝm. Our method involves the representation theory of the Lie group M and the group Fourier transform.
机构:
Arizona State Univ, Sch Math & Stat Sci, Phys Sci Bldg A,Wing Rm 216,901 S Palm Walk, Tempe, AZ 85287 USAArizona State Univ, Sch Math & Stat Sci, Phys Sci Bldg A,Wing Rm 216,901 S Palm Walk, Tempe, AZ 85287 USA