The □b-Heat Equation on Quadric Manifolds

被引:0
|
作者
Albert Boggess
Andrew Raich
机构
[1] Texas A&M University,Department of Mathematics
[2] 1 University of Arkansas,Department of Mathematics
来源
关键词
Quadric manifold; Lie group; Heat kernel; Heat equation; Fundamental solution; Kohn Laplacian; Heisenberg group; 32W30; 33C45; 43A80; 35K08;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we give an explicit calculation of the partial Fourier transform of the fundamental solution to the □b-heat equation on quadric submanifolds M⊂ℂn×ℂm. As a consequence, we can also compute the heat kernel associated with the weighted \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\partial}$\end{document}-equation in ℂn when the weight is given by exp (−φ(z,z)⋅λ) where φ:ℂn×ℂn→ℂm is a quadratic, sesquilinear form and λ∈ℝm. Our method involves the representation theory of the Lie group M and the group Fourier transform.
引用
收藏
页码:256 / 275
页数:19
相关论文
共 50 条
  • [21] The $\square_b$-Heat equation on pseudoconvex manifolds of finite type in ${\mathbb C}^2$
    Alexander Nagel
    Elias M. Stein
    Mathematische Zeitschrift, 2001, 238 : 37 - 88
  • [22] MAPPINGS OF QUADRIC CAUCHY-RIEMANN MANIFOLDS
    FORSTNERIC, F
    MATHEMATISCHE ANNALEN, 1992, 292 (01) : 163 - 180
  • [23] SHARP GRADIENT ESTIMATES FOR A HEAT EQUATION IN RIEMANNIAN MANIFOLDS
    Ha Tuan Dung
    Nguyen Thac Dung
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (12) : 5329 - 5338
  • [24] Gradient estimates for a simple nonlinear heat equation on manifolds
    Ma, Li
    APPLICABLE ANALYSIS, 2017, 96 (02) : 225 - 230
  • [25] THE HEAT-EQUATION ON NONCOMPACT RIEMANNIAN-MANIFOLDS
    GRIGORYAN, AA
    MATHEMATICS OF THE USSR-SBORNIK, 1992, 72 (01): : 47 - 77
  • [26] Transversality of stable and Nehari manifolds for a semilinear heat equation
    Flavio Dickstein
    Noriko Mizoguchi
    Philippe Souplet
    Fred Weissler
    Calculus of Variations and Partial Differential Equations, 2011, 42 : 547 - 562
  • [27] GRADIENT ESTIMATE FOR A NONLINEAR HEAT EQUATION ON RIEMANNIAN MANIFOLDS
    Jiang, Xinrong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (08) : 3635 - 3642
  • [28] Heat equation for harmonic maps of the compactification of complete manifolds
    Dong Pyo Chi
    Hyeong In Choi
    Hyun Jung Kim
    The Journal of Geometric Analysis, 1998, 8 (4): : 515 - 531
  • [29] The heat equation on manifolds as a gradient flow in the Wasserstein space
    Erbar, Matthias
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01): : 1 - 23
  • [30] Transversality of stable and Nehari manifolds for a semilinear heat equation
    Dickstein, Flavio
    Mizoguchi, Noriko
    Souplet, Philippe
    Weissler, Fred
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 42 (3-4) : 547 - 562