Continued fractions for some transcendental numbers

被引:0
作者
Andrew N. W. Hone
机构
[1] University of Kent,School of Mathematics, Statistics and Actuarial Science
来源
Monatshefte für Mathematik | 2017年 / 182卷
关键词
Continued fraction; Non-autonomous recurrence; Transcendental number; Primary 11J70; Secondary 11B37;
D O I
暂无
中图分类号
学科分类号
摘要
We consider series of the form pq+∑j=2∞1xj,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{p}{q} +\sum _{j=2}^\infty \frac{1}{x_j}, \end{aligned}$$\end{document}where x1=q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1=q$$\end{document} and the integer sequence (xn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_n)$$\end{document} satisfies a certain non-autonomous recurrence of second order, which entails that xn|xn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_n|x_{n+1}$$\end{document} for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}. It is shown that the terms of the sequence, and multiples of the ratios of successive terms, appear interlaced in the continued fraction expansion of the sum of the series, which is a transcendental number.
引用
收藏
页码:33 / 38
页数:5
相关论文
共 6 条
  • [1] Davison JL(1991)Continued fractions for some alternating series Monatsh. Math. 111 119-126
  • [2] Shallit JO(2002)The Laurent Phenomenon Adv. Appl. Math. 28 119-144
  • [3] Fomin S(1955)Rational approximations to algebraic numbers Mathematika 2 1-20
  • [4] Zelevinsky A(1982)Simple continued fractions for some irrational numbers. II J. Number Theory 14 228-231
  • [5] Roth KF(undefined)undefined undefined undefined undefined-undefined
  • [6] Shallit JO(undefined)undefined undefined undefined undefined-undefined